首页 | 本学科首页   官方微博 | 高级检索  
     

基于VMD-PNN的砂轮钝化声发射检测
引用本文:龚子维,刘希强,张仲宁,杨京,程建春,刘翔雄. 基于VMD-PNN的砂轮钝化声发射检测[J]. 声学技术, 2021, 40(2): 260-268
作者姓名:龚子维  刘希强  张仲宁  杨京  程建春  刘翔雄
作者单位:南京大学声学研究所, 江苏南京 210093;人工微结构科学与技术协同创新中心, 江苏南京 210093;华辰精密装备(昆山)股份有限公司, 江苏昆山 215337
基金项目:国家自然科学基金项目(11374157)。
摘    要:在磨削加工过程中,加工刀具即砂轮会发生钝化现象,砂轮表面磨损影响加工精度和工件质量,需要及时检测并修整.磨粒的塑性变形、破碎、断裂等会产生声发射信号,能够作为精确识别砂轮钝化状态的依据,且不易被噪声干扰,因此提出一种基于变分模态分解(Variational Mode Decomposition,VMD)和概率神经网络(...

关 键 词:砂轮钝化  声发射  变分模态分解(VMD)  概率神经网络(PNN)
收稿时间:2020-03-09
修稿时间:2020-03-26

Acoustic emission detection of blunting states of grinding wheel based on VMD-PNN
GONG Ziwei,LIU Xiqiang,ZHANG Zhongning,YANG Jing,CHENG Jianchun,LIU Xiangxiong. Acoustic emission detection of blunting states of grinding wheel based on VMD-PNN[J]. Technical Acoustics, 2021, 40(2): 260-268
Authors:GONG Ziwei  LIU Xiqiang  ZHANG Zhongning  YANG Jing  CHENG Jianchun  LIU Xiangxiong
Affiliation:Institute of Acoustic, Nanjing University, Nanjing 210093, Jiangsu, China;Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, Jiangsu, China; Huachen Precision Equipment(Kunshan) Co., Ltd., Kunshan 215337, Jiangsu, China
Abstract:During the grinding process, the blunting phenomenon occurs on the processing tool, i.e. the grinding wheel. The wear of the grinding wheel surface affects the machining accuracy and the quality of the workpiece, and it needs to be detected and repaired in time. The plastic deformation, fragmentation, and fracture of the abrasive particles will generate acoustic emission (AE) signals, which can be used as a basis identifying the blunting states of the grinding wheel, and it is not easy to be disturbed by noise. Therefore, an AE detection method of grinding wheel blunting states based on variational mode decomposition (VMD) and probabilistic neural network (PNN) is proposed. VMD can decompose the original signal into multiple intrinsic mode function (IMF) components, and filter out the components with larger kurtosis to reconstruct AE signal. The key to AE detection is the selection of characteristic parameters. Based on the related researches, the proportion of envelope energy is presented as an important characteristic parameter, and a total of 5 characteristic parameters are selected to construct a five-dimensional characteristic vector dataset and input to PNN for training. After testing, the recognition accuracy reaches 94.5%. This method establishes the relationship between the characteristic parameters of AE signal and the different blunting states of grinding wheel, which can accurately predict the severe blunting state of grinding wheel and has practical application value. Moreover, the accuracies using different characteristic parameters of AE signals to identify the blunting states of grinding wheel are compared in this paper, which has reference significance for the selection of characteristic parameters.
Keywords:grinding wheel blunting  acoustic emission  variational mode decomposition (VMD)  probabilistic neural network (PNN)
点击此处可从《声学技术》浏览原始摘要信息
点击此处可从《声学技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号