首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积稀疏表示的红外与可见光图像融合
引用本文:董安勇,苏斌,赵文博,杜庆治,彭艺. 基于卷积稀疏表示的红外与可见光图像融合[J]. 激光与红外, 2018, 48(12): 1547-1553
作者姓名:董安勇  苏斌  赵文博  杜庆治  彭艺
作者单位:1.昆明理工大学信息工程与自动化学院,云南 昆明 650500;2.昆明北方红外技术股份有限公司,云南 昆明 650600
基金项目:国家自然科学基金项目(No.61761025);昆明市科技局科技成果推广应中及科技惠民计划项目(No.昆科计字2016-2-G-05372)资助
摘    要:稀疏表示是以块为单位进行编码的,因此破坏了图像块间的相关性。针对上述问题,提出了基于卷积稀疏表示的红外与可见光图像融合算法。该算法采用交替方向乘子算法(ADMM)求解非下采样轮廓波变换(NSCT)域强边缘子带的卷积稀疏系数,完成特征响应系数的融合。同时,采用脉冲耦合神经网络(PCNN)模型的点火图完成NSCT域高频子带的融合。实验结果表明:该算法解决了稀疏表示的“块效应”问题,同时又兼具PCNN模型的视觉特性,可以有效地捕捉源图像的特征信息。另外,在主观视觉评价和客观质量评价方面均优于现有算法。

关 键 词:图像融合  卷积稀疏表示  PCNN神经元模型  NSCT变换

Infrared and visible image fusion based on convolution sparse representation
DONG An-yong,SU Bin,ZHAO Wen-bo,DU Qing-zhi,PENG Yi. Infrared and visible image fusion based on convolution sparse representation[J]. Laser & Infrared, 2018, 48(12): 1547-1553
Authors:DONG An-yong  SU Bin  ZHAO Wen-bo  DU Qing-zhi  PENG Yi
Affiliation:1.Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;2.Kunming North Infrared Technology Co.Ltd.,Kunming 650500,China
Abstract:Sparse representation is encoded in blocks,which destroys the correlation between image blocks.To solve the above problem,an infrared and visible image fusion algorithm based on convolution sparse representation is proposed.The algorithm uses the alternating direction multiplier algorithm(ADMM) to solve the convolution sparse coefficients of the strong edge subbands in the non-subsampled contourlet transform(NSCT) domain and complete the fusion of the feature response coefficients.At the same time,the high-frequency subbands fusion in the NSCT domain is completed using the ignition map of a pulse coupled neural network(PCNN) model.The experimental results show that the algorithm solves the "block effect" problem of sparse representation,and simultaneously has the visual characteristics of the PCNN model,which can effectively capture the feature information of the source image.In addition,subjective visual evaluation and objective quality evaluation are better than existing algorithms.
Keywords:image fusion  convolution sparse representation  PCNN model  NSCT transform
点击此处可从《激光与红外》浏览原始摘要信息
点击此处可从《激光与红外》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号