首页 | 本学科首页   官方微博 | 高级检索  
     


Differential effect of steady versus oscillating flow on bone cells
Authors:CR Jacobs  CE Yellowley  BR Davis  Z Zhou  JM Cimbala  HJ Donahue
Affiliation:Department of Orthopaedics and Rehabilitation, Penn State University, Hershey 17033, USA. cjacobs@ortho.nmc.psu.edu
Abstract:Loading induced fluid flow has recently been proposed as an important biophysical signal in bone mechanotransduction. Fluid flow resulting from activities which load the skeleton such as standing, locomotion, or postural muscle activity are predicted to be dynamic in nature and include a relatively small static component. However, in vitro fluid flow experiments with bone cells to date have been conducted using steady or pulsing flow profiles only. In this study we exposed osteoblast-like hFOB 1.19 cells (immortalized human fetal osteoblasts) to precisely controlled dynamic fluid flow profiles of saline supplemented with 2% fetal bovine serum while monitoring intracellular calcium concentration with the fluorescent dye fura-2. Applied flows included steady flow resulting in a wall shear stress of 2 N m(-2), oscillating flow (+/-2 Nm(-2)), and pulsing flow (0 to 2 N m(-2)). The dynamic flows were applied with sinusoidal profiles of 0.5, 1.0, and 2.0 Hz. We found that oscillating flow was a much less potent stimulator of bone cells than either steady or pulsing flow. Furthermore, a decrease in responsiveness with increasing frequency was observed for the dynamic flows. In both cases a reduction in responsiveness coincides with a reduction in the net fluid transport of the flow profile. Thus. these findings support the hypothesis that the response of bone cells to fluid flow is dependent on chemotransport effects.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号