首页 | 本学科首页   官方微博 | 高级检索  
     

遗传聚类算法在基于网络异常入侵检测中的应用
引用本文:唐勇,郭慧玲. 遗传聚类算法在基于网络异常入侵检测中的应用[J]. 计算机应用与软件, 2006, 23(9): 24-25,88
作者姓名:唐勇  郭慧玲
作者单位:燕山大学信息科学与工程学院,河北,秦皇岛,066004;燕山大学信息科学与工程学院,河北,秦皇岛,066004
摘    要:传统的入侵检测方法在面对多变的网络结构时缺乏可扩展性,而且在未知的攻击类型面前也缺乏适应性。因此,提出一种新的检测方法——基于遗传聚类的网络异常检测(NAIDGC)算法。对聚类中心采用二进制编码,把每一个点到它们各自的聚类中心的欧几里得距离的总和作为相似度量,通过遗传算法寻找聚类中心。计算机仿真结果显示了此算法对入侵检测是有效的。

关 键 词:入侵检测  异常检测  遗传算法  遗传聚类算法
收稿时间:2005-07-15
修稿时间:2005-07-15

GENETIC CLUSTERING ALGORITHM APPROACH TO INTRUSION DETECTION BASED ON NETWORK ANOMALY
Tang Yong,Guo Huiling. GENETIC CLUSTERING ALGORITHM APPROACH TO INTRUSION DETECTION BASED ON NETWORK ANOMALY[J]. Computer Applications and Software, 2006, 23(9): 24-25,88
Authors:Tang Yong  Guo Huiling
Affiliation:College of Information Science and Engineering, Yanshan University, Qinhuangdao Hebei 066004, China
Abstract:Traditional intrusion detection methods lack extensibility in face of changing network configurations as well as adaptability in face of unknown attack type.Therefore,a new detection algorithm,the Network Anomaly Intrusion Detection based on Genetic Clustering (NAIDGC) algorithm is proposed in this paper.The cluster centers are binary encoded.The sum of the Euclidean distances of the points from their respective cluster centers is adopted as the similarity metric.The near optimal cluster centers are chosen by the genetic algorithm.Computer simulations show that this algorithm is effective for intrusion detection.
Keywords:Intrusion detection Anomaly detection Genetic algorithms Genetic clustering algorithms
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号