首页 | 本学科首页   官方微博 | 高级检索  
     


Large deflection analysis of flexible plates by the meshless finite point method
Authors:M Bitaraf  S Mohammadi
Affiliation:School of Civil Engineering, University of Tehran, Tehran, Iran
Abstract:The classical finite difference technique and methods based on series expansions can only be adopted for solving plates with simple geometry, loading and boundary conditions. In contrast, the finite element method has been widely used for general analysis of bending and flexible plates (coupled bending and in-plane effects). Lack of stress continuity and relatively expensive mesh generation and remeshing schemes have led to the emergence of meshless methods, such as the finite point method (FPM). FPM is a strong form solution which combines the moving least square interpolation technique on a domain of irregularly distributed points with a point collocation scheme to derive system governing equations. In this study, coupled nonlinear partial differential equations of fourth order are solved to analyse large deflection behaviour of plates subjected to lateral and in-plane loadings. Several plate problems are solved and compared with analytical solution and other available numerical results to assess the performance of the proposed approach.
Keywords:Finite point method  Meshless methods  Flexible plates
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号