首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of mixing parameters in agitated pulp chests: A continuous time domain approach
Authors:H Patel  F Ein-MozaffariSR Upreti
Affiliation:Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 Canada
Abstract:Parameter identification is quite challenging in mixing, which is extensively employed in chemical process industry. Agitated pulp chests are more difficult to characterize because they handle non-Newtonian pulp suspensions and non-ideal flows such as short circuiting, recirculation and channeling. In the present study, we characterize the agitated pulp chests in the continuous time domain, which obviates the restrictions imposed by the discrete time approach. For this purpose, a robust and efficient hybrid genetic algorithm is utilized along with a differential-algebraic model of mixing. Necessary derivatives including auxiliary differential equations are obtained for gradient search. Using realistic large sets of mixing data, both the algorithm and the model are successfully validated before characterizing laboratory-scale agitated pulp chests. Superior characterizations are obtained compared to those yielded by the discrete time domain approach. This outcome highlights the benefit of the continuous time domain approach developed in this work.
Keywords:GA  genetic algorithm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号