首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructural evolution during silicon carbide (SiC) formation by liquid silicon infiltration using optical microscopy
Authors:Jesse C Margiotta  Dajie Zhang  Dennis C Nagle
Affiliation:1. Advanced Technology Laboratory, Johns Hopkins University, Baltimore, MD 21211, USA;2. Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Abstract:Optical microscopy and quantitative digital image analysis were used to examine the formation of fully dense, net shape silicon carbide by liquid silicon infiltration (LSI) of porous carbon preforms. By examining the phase distribution and structural changes during the reaction, we identified six reaction stages (I–VI) that describe reaction mechanisms and their time scales. The initial stages (0–15 min) of the LSI reaction include (I) liquid silicon infiltration of the carbon preform, (II) dissolution of carbon, and (III) formation of silicon carbide at the liquid–solid interfacial regions. These initial stages occur simultaneously and very rapidly, and culminate in (IV) the completion of a continuous silicon carbide layer of about 10 μm at every liquid–solid interface. Further reaction can only be achieved by (V) carbon diffusion through this layer. The reaction is essentially complete after ∼120 min. Longer reaction times should be avoided because over-reacting causes (VI) long, thin silicon-filled cracks to develop within the continuous silicon carbide matrix.
Keywords:Silicon carbide  Liquid silicon infiltration  Quantitative digital image analysis  Refractory
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号