首页 | 本学科首页   官方微博 | 高级检索  
     

融合复小波特征和局部二值模式的纹理聚类
引用本文:幸锐,徐舒畅,张三元,竺乐庆. 融合复小波特征和局部二值模式的纹理聚类[J]. 浙江大学学报(工学版), 2010, 44(5): 910-914. DOI: 10.3785/j.issn.1008-973X.2010.05.013
作者姓名:幸锐  徐舒畅  张三元  竺乐庆
作者单位:1. 浙江大学 计算机科学与技术学院, 浙江 杭州310027; 2. 杭州师范大学 信息科学与工程学院,浙江 杭州 310036
基金项目:国家“863”高技术研究发展计划资助项目(2007AA01Z311, 2007AA04ZA5);国家“973”重点基础研究发展规划资助项目(2009CB320800);国家自然科学基金资助项目(60473106);浙江省科技计划资助项目(2009C31034).
摘    要:为了解决图像检索中聚类问题,对图像作双树旋转复小波变换,再对变换后的系数通过广义高斯模型建模后,计算Kullback-Leibler距离;对图像采用局部二值模式,计算图像之间的对数似然距离.将这2种距离采用事先计算得到的加权因子进行融合得到新的距离.在此距离的基础上构建邻接矩阵,对邻接矩阵采用谱聚类的方法进行聚类运算.实验证明,由于双树旋转复小波变换和局部二值模式之间存在互补性,在聚类过程中将2种特征距离结合起来,能够有效地提高聚类的正确性.

关 键 词:双树旋转复小波  纹理  Kullback-Leibler距离  局部二值模式

Texture clustering combining complex wavelet features and local binary pattern
XING Rui,XU Shu-chang,ZHANG San-yuan,ZHU Le-qing. Texture clustering combining complex wavelet features and local binary pattern[J]. Journal of Zhejiang University(Engineering Science), 2010, 44(5): 910-914. DOI: 10.3785/j.issn.1008-973X.2010.05.013
Authors:XING Rui  XU Shu-chang  ZHANG San-yuan  ZHU Le-qing
Affiliation:1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China;2. Department of Information Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China
Abstract:A dual tree rotated complex wavelet (DT RCW) transform was applied on images to solve the clustering problem in image retrieval. Kullback Leibler distances were computed with the generalized Gaussian density model of each high frequency band. A local binary pattern was employed on each image and the log likelihood distances were computed. The two distances were combined with the pre computed weight to produce new distance, on which an adjacent matrix was built. Then spectral clustering was performed with the generated adjacent matrix. Because the local binary pattern can be considered as the complementary feature of rotated complex wavelet, the experimental results show that combining the rotated complex wavelet and the local binary pattern can effectively improve the clustering performance.
Keywords:dual tree rotated complex wavelet (DT-RCW)  texture  Kullback-Leibler distance  local binary pattern
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号