首页 | 本学科首页   官方微博 | 高级检索  
     

改进的BP神经网络算法在水质监测中的应用
引用本文:李福,郭健. 改进的BP神经网络算法在水质监测中的应用[J]. 计算机系统应用, 2015, 24(10): 243-247
作者姓名:李福  郭健
作者单位:南京理工大学 自动化学院, 南京, 210094;南京理工大学 自动化学院, 南京, 210094
摘    要:针对一类多输入多输出系统进行辨识, 以"A simulation of the western basin of Lake Erie"为例, 通过分析河流湖泊的水质特征, 针对伊利湖湖泊水质建立数学模型, 由于该环境系统为多输入多输出系统, 文章采用了一种改进的BP神经网络算法, 利用Matlab神经网络工具箱进行数据分析, 绘出实际输出与模型输出的曲线以分析相关情况, 检验建立的模型对于系统的辨识水平, 给出传统BP网络和改进BP网络对该系统辨识的结果进行分析对比. 文章还对不同噪声层次下的数据进行分析比较, 并研究白噪声对于人工神经网络模型的影响.

关 键 词:环境系统  系统辨识  BP神经网络  数学建模  Matlab
收稿时间:2015-01-22
修稿时间:2015-03-12

Application of an Improved BP Neural Network Algorithm in Water Quality Monitoring
LI Fu and GUO Jian. Application of an Improved BP Neural Network Algorithm in Water Quality Monitoring[J]. Computer Systems& Applications, 2015, 24(10): 243-247
Authors:LI Fu and GUO Jian
Affiliation:School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China;School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:This paper proposes an identification for a class of MIMO system. Taking "A simulation of the western basin of Lake Erie" as an example, quality characteristics of water system is analyzed and mathematical models of Lake Erie is made in this paper. An optimized BP ANN model is used for this MIMO system and the MATLAB's NNT is used to carry on data processing. The effectiveness of system identification is inspected by the curves between models' output and actual results. The comparison between traditional and optimized BP ANN is given at the end of this paper. In this paper data collected under different noises is compared to study on the effect of white noises on ANN.
Keywords:environmental systems  systemidentification  BPANN  mathematical modeling  Matlab
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号