首页 | 本学科首页   官方微博 | 高级检索  
     


Tension–compression fatigue of a SiC/SiC ceramic matrix composite at 1200 °C in air and in steam
Affiliation:1. Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China;2. State Key Laboratory of Mechanics and Control Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
Abstract:Tension–compression fatigue behavior of a non-oxide ceramic composite with a multilayered matrix was investigated at 1200 °C in laboratory air and in steam. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated woven Hi-Nicalon? fibers. Fiber preforms had pyrolytic carbon fiber coating with boron carbide overlay applied. Tension–compression fatigue behavior was studied for fatigue stresses ranging from 80 to 200 MPa at a frequency of 1.0 Hz. Presence of steam significantly degraded the fatigue performance. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. The material retained 100% of its tensile strength. Composite microstructure, as well as damage and failure mechanisms were investigated.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号