首页 | 本学科首页   官方微博 | 高级检索  
     

红外烘烤对魔芋葡甘露聚糖表观黏度以及微观结构的影响
引用本文:唐兰兰,张世奇,卫子颜,张盛林,刘雄. 红外烘烤对魔芋葡甘露聚糖表观黏度以及微观结构的影响[J]. 食品科学, 2021, 42(17): 98-105. DOI: 10.7506/spkx1002-6630-20200920-262
作者姓名:唐兰兰  张世奇  卫子颜  张盛林  刘雄
作者单位:(1.西南大学食品科学学院,重庆 400715;2.岭南师范学院食品科学与工程学院,广东 湛江 524048;3.西南大学魔芋研究中心,重庆 400715)
摘    要:加热处理能降低魔芋葡甘露聚糖(konjac glucomannan,KGM)的黏度,并显著影响其理化性质.本实验以纯化魔芋微粉为原料,通过KGM水溶胶黏度、流变性质测定和KGM分子质量测定,KGM紫外吸收光谱、傅里叶变换红外光谱分析,以及KGM扫描电子显微镜观察,研究红外烘烤温度、时间对KGM表观黏度以及微观结构的影响...

关 键 词:魔芋葡甘露聚糖  红外烘烤  表观黏度  微观结构  分子质量

Effect of Infrared Baking on Apparent Viscosity and Microstructure of Konjac Glucomannan
TANG Lanlan,ZHANG Shiqi,WEI Ziyan,ZHANG Shenglin,LIU Xiong. Effect of Infrared Baking on Apparent Viscosity and Microstructure of Konjac Glucomannan[J]. Food Science, 2021, 42(17): 98-105. DOI: 10.7506/spkx1002-6630-20200920-262
Authors:TANG Lanlan  ZHANG Shiqi  WEI Ziyan  ZHANG Shenglin  LIU Xiong
Affiliation:(1. College of Food Science, Southwest University, Chongqing 400715, China; 2. College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China; 3. Institude of Konjac Research, Southwest University, Chongqing 400715, China )
Abstract:Previous studies have confirmed that heat treatments can reduce the viscosity of konjac glucomannan (KGM), and significantly affect the physical and chemical properties. This study aimed to investigate the effect of infrared baking temperature and time on the viscosity and microstructure of KGM. The viscosity and rheological properties of KGM hydrosols and the molecular mass of KGM were measured and KGM was analyzed by ultraviolet spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The microstructure was observed by scanning electron microscopy (SEM). The results showed that the apparent viscosity of KGM hydrosols exhibited a typical shear-thinning behavior with the increase in baking temperature and time, and the elastic modulus (G’) and loss modulus (G”) increased markedly. The apparent viscosity at a shear rate of 10 s-1 decreased by 97.18% after 30 min of baking at 150 ℃, and by 99.51% after 10 min of baking at 180 ℃. Scanning electron microscopy (SEM) confirmed that the microstructure was disrupted by baking in a time-dependent and temperature-dependent manner. However, FTIR spectroscopy showed that baking treatment did not destroy the repeating unit structure or characteristic functional groups of KGM, retaining the basic structure in spite of some glycosidic and hydrogen bonds. Baking treatment at 150 ℃ for 30 min or 180 ℃ for 10 min greatly decreased the molecular mass of KGM. Therefore, infrared baking could be an effective way to decrease the viscosity of KGM, altering its physicochemical properties to extend its application in the food and medical fields.
Keywords:konjac glucomannan   infrared baking   apparent viscosity   microstructure   molecular mass,
点击此处可从《食品科学》浏览原始摘要信息
点击此处可从《食品科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号