首页 | 本学科首页   官方微博 | 高级检索  
     

基于BERT和路径对比学习的归纳关系预测
作者姓名:尹熹  梁京章
作者单位:广西大学 电气工程学院,南宁530004
基金项目:广西重点研发计划资助项目(桂科AB22035033)
摘    要:在以往的知识图谱关系预测任务中,主要方法仅限于直推式推理,它们在新出现实体和关系情况下不能利用先验知识去处理归纳学习的问题。提出了基于BERT与路径对比学习的关系预测方法(BERT-based and path comparison learning,BPCL)。首先,利用卷积神经网络捕获子图目标三元组的上下文邻域信息,并将子图线性化为关系路径,利用BERT初始化边特征;其次,引入正、负关系路径;最后,联合对比学习和自监督学习训练对新出现实体之间的关系预测。在适用于归纳推理方法的常用基准数据集上,验证了该模型的预测精度有所提高。

关 键 词:知识图谱补全  归纳推理  对比学习  关系预测  预训练
收稿时间:2022-05-26
修稿时间:2022-07-25
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号