首页 | 本学科首页   官方微博 | 高级检索  
     

基于巡逻无人机的轻量型安全帽佩戴检测方法与应用
引用本文:张传深,徐 升,胡 佳,王 强. 基于巡逻无人机的轻量型安全帽佩戴检测方法与应用[J]. 集成技术, 2023, 12(4): 18-31
作者姓名:张传深  徐 升  胡 佳  王 强
作者单位:山东中科先进技术有限公司 济南 250102;中国移动通信集团山东有限公司德州分公司 德州 253521;中国科学院深圳先进技术研究院 深圳 518055;浪潮集团有限公司 济南 250101
基金项目:山东省重点研发计划项目(2021CXGC011304);深圳市科技计划资助项目(JCYJ20210324102401005)
摘    要:目前,安全帽检测系统主要使用固定摄像头,无法实现全区域检测,而基于深度学习的检测算法结构复杂、计算成本高,无法满足移动端和嵌入式设备的部署要求。针对上述问题,该文提出一种基于无人机的安全帽轻量型视觉检测算法。系统通过无人机平台搭载的相机对施工现场进行图像采集,并无线传输至后台计算机进行处理,检测算法基于 YOLOv5s 框架进行了轻量化改进。针对无人机采集影像中目标占比较小的问题,该文采用了多尺度检测、图像预处理、正负样本不均衡等方法,对 YOLOv5s 目标检测算法进行针对性改进。测试结果表明,与原模型相比,轻量型目标检测模型的平均精度均值仅下降了 1.72%,但在同一 CPU 上的推理速度提升了 1 倍,浮点计算量由原来的每秒 165 亿次压缩至每秒 34 亿次,模型大小约为原模型的 1/10。

关 键 词:轻量型检测算法;安全帽检测;无人机;自动巡航

Research on Safety Helmet Recognition Method and Application Using Patrol Unmanned Aerial Vehicle
ZHANG Chuanshen,XU Sheng,HU Ji,WANG Qiang. Research on Safety Helmet Recognition Method and Application Using Patrol Unmanned Aerial Vehicle[J]. , 2023, 12(4): 18-31
Authors:ZHANG Chuanshen  XU Sheng  HU Ji  WANG Qiang
Abstract:The existing helmet detection system mainly uses a fixed camera, it cannot achieve full-area detection, and the previous detection algorithms based on deep learning have complex structures and high computational costs, which cannot meet the requirements of using mobile vehicles and embedded devices. In this paper, a lightweight helmet detection algorithm scheme based on unmanned aerial vehicle is proposed. The drone is loaded with camera to collect images of the construction site, and the image data is transferred to the computer via wireless communication. Based on the YOLOv5s target detection algorithm, a lightweight detection algorithm is investigated. To improve the detection more efficient, the YOLOv5s target detection algorithm is improved in terms of multi-scale detection, image preprocessing, unbalanced positive and negative samples, and inference speed. This design scheme combines deep learning and unmanned aerial vehicle technology, not only to realize real-time automatic detection of helmet wearing, but also can realize the full-area helmet detection of the construction site. Real experiments show that, the lightweight target detection model is only 1.72% lower than the mean average precision of the original model. The inference speed on the same CPU can be doubled, and the floating-point calculation is reduced from 16.5 billion to 3.4 billion times per second. The model size is almost 1/10 of the original size.
Keywords:lightweight detection algorithm   safety helmet detection   unmanned aerial vehicle   automatic patrol
点击此处可从《集成技术》浏览原始摘要信息
点击此处可从《集成技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号