首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of CYP2D6 substrate interactions by computational methods
Authors:Ito Yuko  Kondo Hiroki  Goldfarb Peter S  Lewis David F V
Affiliation:Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-City, Fukuoka 820-8502, Japan. yuko_ito77@hotmail.com
Abstract:Cytochrome P450 CYP2D6 is involved in the oxidation of well over 150 drugs and, in general, those which contain a basic nitrogen atom in the molecule. To clarify how the residues of CYP2D6 are utilized for orientating a wide range of its specific substrates and distinguishing them from a variety of other organic compounds, docking studies by AutoDock and molecular dynamics (MD) simulations were conducted. Specific ligands were docked to both the homology model and crystal structures optimally to estimate the site of reaction on the ligand molecule and the binding energy for the complex, which were generally in good agreement with the experimental data. MD simulation for the CYP2D6-propranolol complex was then carried out to reveal the amino acid residues interacting with the substrate at the active site. Phe-120, Glu-216, Asp-301, and Phe-483 are identified as the substrate-binding residues in agreement with previously reported site-directed mutagenesis data and the crystal structure reported recently (PDB code: 2F9Q). As well as these residues, our theoretical prediction suggests that Phe-219 and Glu-222 are also important residues for mediating oxidation of substrates, especially propranolol.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号