首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical simulation of slip flow through rhombus microchannels
Authors:M Shams  M Shojaeian  C Aghanajafi  SAR Dibaji
Affiliation:1. Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran;2. Islamic Azad University, Science and Research Campus, Tehran, Iran
Abstract:Microgeometry fluid dynamics has gotten a lot interest due to the arrival of Micro-Electro-Mechanical systems (MEMS). When the mean free path of a gas and characteristic length of the channel are in the same order, continuum assumption is no longer valid. In this situation velocity slip and temperature jump occur in the duct walls. Fully developed numerical analysis for characteristic laminar slip flow and heat transfer in rhombus microchannels are performed with slip velocity, and temperature-jump boundary condition at walls. The impacts of Reynolds number (0.1 < Re < 40), velocity slip, and temperature-jump on Poiseuille number, and Nusselt number for different aspect ratio (0.15 < A < 1.0), and Knudsen number are studied in detail. The contours of non-dimensional velocity for some cases are examined as well. The results show that aspect ratio and Knudsen number have important impact on Poiseuille number, and Nusselt number in rhombus microchannels. Reynolds number has considerable influence on Nusselt number at low Reynolds number, but its influence on Poiseuille number is not very important at the studied range.
Keywords:Slip Flow  Rhombus  Microchannel  MEMS
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号