首页 | 本学科首页   官方微博 | 高级检索  
     


Channel estimation techniques for linear precoded systems: Supervised, unsupervised, and hybrid approaches
Authors:Paula M. Castro José   A. Garcí  a-Naya,Adriana Dapena Daniel Iglesia
Affiliation:Department of Electronics and Systems, University of A Coruña, Campus de Elviña s/n, 15071 A Coruña, Spain
Abstract:Linear precoding is an attractive technique to combat interference in multiple-input multiple-output systems because it reduces cost and power consumption at the receiver. Frequency division duplex systems with linear precoding acquire the channel state information at the receiver side by using supervised algorithms. Such methods make use of pilot symbols periodically provided by the transmitter. Next, this channel state information is sent to the transmitter side through a low-cost feedback channel. Thus, the available channel information allows the transmitter to adapt signals to the channel conditions. Given that pilot symbols do not convey user data, they penalize throughput, spectral efficiency, and transmission energy consumption of the system. In this work, we propose to mitigate the aforementioned limitations by combining both supervised and unsupervised algorithms to acquire the channel state information needed by the transmitter. The key idea consists in introducing a simple criterion to determine whether the channel has suffered a significant variation which requires the transmission of pilot symbols. Otherwise, when small fluctuations happen, an unsupervised method is used to track these channel variations instead. This criterion will be evaluated by considering two types of strategies for the design of the linear precoders: Zero-Forcing and Wiener criteria.
Keywords:Linear Precoding   MIMO   Blind Source Separation   Learning Rules
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号