首页 | 本学科首页   官方微博 | 高级检索  
     


Process simulation and energy integration in the mineral carbonation of blast furnace slag
Authors:Jianqiu Gao  Chun Li  Weizao Liu  Jinpeng Hu  Lin Wang  Qiang Liu  Bin Liang  Hairong Yue  Guoquan Zhang  Dongmei Luo  Siyang Tang
Affiliation:School of Chemical Engineering, Sichuan University, Chengdu 610065, China
Abstract:Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of solid waste but also realize the in-situ fixation of CO_2 with low energy consumption if integrated with the waste heat utilization.In this study, based on our previous works, Aspen Plus was employed to simulate and optimize the carbonation process and integrate the process energy.The effects of gehlenite extraction, MgSO_4 carbonation,and aluminum ammonium sulfate crystallization were studied systematically.The simulation results demonstrate that 2.57 kg of BF slag can sequester 1 kg of CO_2, requiring 5.34 MJ of energy(3.3 MJ heat and 2.04 MJ electricity), and this energy includes the capture of CO_2 from industrial flue gases.Approximately 60 kg net CO_2 emission reduction could be achieved for the disposal of one ton of BF slag.In addition, the by-product,aluminum ammonium sulfate, is a high value-added product.Preliminary economic analysis indicates that the profit for the whole process is 1127 CNY per ton of BF slag processed.
Keywords:Blast furnace slag  Mineral carbonation  Process simulation and energy integration  Utilization of solid residuals  Ammonium alum  Ammonium sulfate
本文献已被 CNKI 万方数据 ScienceDirect 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号