首页 | 本学科首页   官方微博 | 高级检索  
     

用于二级缓存的一种改进的自适应缓存管理算法
引用本文:孙国忠, 袁清波, 陈明宇, 樊建平. 用于二级缓存的一种改进的自适应缓存管理算法[J]. 计算机研究与发展, 2007, 44(8): 1331-1338.
作者姓名:孙国忠  袁清波  陈明宇  樊建平
作者单位:中国科学院计算技术研究所国家智能计算机研究开发中心,中国科学院计算技术研究所国家智能计算机研究开发中心,中国科学院计算技术研究所国家智能计算机研究开发中心,中国科学院计算技术研究所 北京100080 中国科学院研究生院北京100049 中国科学院计算机系统结构重点实验室北京100080,北京100080 中国科学院研究生院北京100049 中国科学院计算机系统结构重点实验室北京100080,北京100080 中国科学院计算机系统结构重点实验室北京100080,北京100080
摘    要:在机群系统或数据库服务器等应用环境下,由于本地内存资源限制,某些大内存应用与磁盘交互过多,会严重损害其性能.在高速网络支持下,把其他节点内存或采用专门的内存服务器作为系统的二级缓存,可减少对磁盘访问并提高应用性能.在二级缓存应用模式下,基于LIRS算法并对其存在的缺点进行改进,提出了一种自适应缓存管理算法LIRS-A. LIRS-A可根据应用访问特征自适应调整,避免了LIRS不适应某些具有时间局部性模式的情况.在TPC-H应用中,LIRS-A比LIRS最多有7.2%的性能提升;在网络流分析数据库的典型Groupby查询中,LIRS-A比LIRS的命中率最多可提高31.2%.

关 键 词:缓存替换  LIRS  LIRS-A  PPM  二级缓存  TPC-H
修稿时间:2006-02-27

An Improved Adaptive Buffer Replacement Algorithm Used for Second Level Buffer
Sun Guozhong, Yuan Qingbo, Chen Mingyu, Fan Jianping. An Improved Adaptive Buffer Replacement Algorithm Used for Second Level Buffer[J]. Journal of Computer Research and Development, 2007, 44(8): 1331-1338.
Authors:Sun Guozhong  Yuan Qingbo  Chen Mingyu  Fan Jianping
Affiliation:1 National Research Center for Intelligent Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080;2 Graduate University of Chinese Academy of Sciences, Beijing 100049;3 Key Laboratory of Computer System and Architecure, Chinese Academy of Sciences, Beijing 100080; 4 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080
Abstract:In a cluster or a database server system, the performance of some data intensive applications will be degraded much because of the limited local memory and large amount of interactions with slow disk. In high speed network, utilizing remote memory of other nodes or customized memory server to be as second level buffer can decrease access numbers to disks and benefit application performance. With second level buffer mode, this paper made some improvements for a recently proposed buffer cache replacement algorithm-LIRS, and brings forward an adaptive algorithm-LIRS-A. LIRS-A can adaptively adjust itself according to application characteristic, thus the problem of not suiting for time locality of LIRS is avoided. In TPC-H benchmarks, LIRS-A could improve hit rate over LIRS by 7.2 % at most. In a Groupby query with network stream analyzing database, LIRS-A could improve hit rate over LIRS by 31.2% at most. When compared with other algorithms, LIRS-A also show similar or better performance.
Keywords:buffer replacement  LIRS  LIRS-A  prediction by partial matching(PPM)  second-level buffer cache  TPC-H
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机研究与发展》浏览原始摘要信息
点击此处可从《计算机研究与发展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号