首页 | 本学科首页   官方微博 | 高级检索  
     

模板法掺铁金红石纳米管制备与形成机理
引用本文:胡仙超,王燕飞,胡素娟,李国华,莫卫民. 模板法掺铁金红石纳米管制备与形成机理[J]. 浙江大学学报(工学版), 2012, 46(11): 2121-2127. DOI: 10.3785/j.issn.1008-973X.2012.11.027
作者姓名:胡仙超  王燕飞  胡素娟  李国华  莫卫民
作者单位:1. 浙江工业大学 化学工程与材料学院,浙江 杭州 310032;2. 浙江工业大学 分析测试中心,浙江 杭州 310032;3.天台县质量技术监督局,浙江 台州 317200
基金项目:国家自然科学基金资助项目(21173193);浙江省自然科学基金资助项目(Y4080209,Y4100662);浙江省教育厅科研资助项目(Y201225711)
摘    要:以TiCl4为钛源,针铁矿(α-FeOOH)为模板,采用牺牲模板法制备掺铁金红石纳米管,应用X射线衍射(XRD)、透射电镜(TEM)、扫描透射面扫描(STEM EDX-Mapping)和X射线光电子能谱(XPS)等手段对掺铁金红石纳米管的物相、形貌、微结构和化学组成等进行系统地表征.结果表明,在高温条件下制备的掺铁金红石样品颗粒为管状结构,纳米管的物相为纯金红石相,管壁外表面由许多针状体包裹,管的两端封闭,内孔直径60~80 nm;管壁由纳米颗粒构成,并具有明显的层状结构特征;元素分析结果表明,Fe3+均匀地掺入到了金红石晶格中,且金红石晶格形成大量的位错和面缺陷.结合金红石纳米管的微结构特征探讨形成机理:在低温条件下,金红石先包覆于针铁矿外表面,并构成以金红石为壳,针铁矿为核的核壳结构纳米复合材料;随着反应温度从30 ℃上升到90 ℃,载体针铁矿逐渐溶解,包覆于载体针铁矿外表面的金红石逐渐增加;同时,铁离子经扩散而进入金红石晶格,最终载体针铁矿全部溶解而形成掺铁金红石纳米管.

关 键 词:掺铁  金红石  纳米管  模板法  形成机理

Preparation and formation mechanism of iron-doped rutile nanotube prepared by template method
HU Xian-chao,WANG Yan-fei,HU Su-juan,LI Guo-hua,MO Wei-min. Preparation and formation mechanism of iron-doped rutile nanotube prepared by template method[J]. Journal of Zhejiang University(Engineering Science), 2012, 46(11): 2121-2127. DOI: 10.3785/j.issn.1008-973X.2012.11.027
Authors:HU Xian-chao  WANG Yan-fei  HU Su-juan  LI Guo-hua  MO Wei-min
Affiliation:1,2(1.College of Chemical Engineering and Materials Science; 2.Research Center of Analysis and Measurement;Zhejiang University of Technology,Hangzhou,310032; 3.The Quality and Technology supervision bureau of Tiantai,Taizhou,317200,China)
Abstract:Iron doped rutile nanotube was prepared by a template method, using TiCl4 as titania precursor and goethite (α-FeOOH) as a template. The crystal phase, morphology, microstructure and chemical composition of the samples were characterized by X-ray diffraction(XRD), Transmission electron microscopy(TEM), Scanning transmission electron microscopy(STEM) EDX-Mapping and X-ray photoelectron spectroscopy(XPS). The results show the crystal phase of the Iron-doped rutile sample prepared at high temperature is rutile, the morphology of the sample particle is tube-like, with two tips enclosed and an inner diameter of 60~80 nm, and a lot of needle like particles grow on the outer surface of the nanotube wall, which is constituted of small particles. Element analyses of EDX-mapping results show that iron element distributes homogeneously in the nanotube. The microstructure of the nanotube shows that many displaces and regional defects exist in the lattice of rutile. A formation mechanism of rutile nanotube growth was proposed: rutile nanoparticles grow on the outer surface of needle-like goethite particles and wrap around the goethite particles at lower temperature, thus rutile-goethite composite with core shell structure forms, in which rutile as a shell layer and goethite as a core; when the preparation temperature rised from 30 ℃ to 90 ℃, the template, goethite is dissolving gradually; at the same time, more and more rutile nanoparticles precipitate onto the outer surface of goethite particle, and iron cations are entering into the lattice of rutile nanoparticles through diffusion; goethite particle is disappearing at last, thus iron doped rutile nanotube forms.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号