首页 | 本学科首页   官方微博 | 高级检索  
     


Evidence for inhibition by protein kinase A of receptor/G alpha(q)/phospholipase C (PLC) coupling by a mechanism not involving PLCbeta2
Authors:KL Dodge  BM Sanborn
Affiliation:Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, 77030, USA.
Abstract:The effects of cAMP on the oxytocin-stimulated increase in phosphatidylinositide turnover and the possible pathways involved were investigated in a human myometrial cell line (PHM1-41) and in COS-M6 cells overexpressing the oxytocin receptor. Preincubation with chlorophenylthio-cAMP (CPT-cAMP), forskolin, or relaxin inhibited oxytocin-stimulated phosphatidylinositide turnover in PHM1-41 cells, and the inhibition was reversed by H-89, a relatively specific protein kinase A inhibitor. Both CPT-cAMP and transiently expressed protein kinase A catalytic subunit inhibited stimulation by oxytocin and carbachol of 3H]inositol 1,3,4-trisphosphate formation in COS-M6 cells expressing oxytocin or muscarinic M1 receptors, respectively. CPT-cAMP also inhibited phosphatidylinositide turnover stimulation by endothelin-1 in PHM1-41 cells, further demonstrating the generality of the cAMP-inhibitory mechanism. Since G betagamma activation of phospholipase Cbeta2 (PLCbeta2) is a suggested target of protein kinase A, the possibility that the oxytocin receptor couples to PLCbeta2 via G alpha(i)G betagamma activation was explored. Western blot analysis of PHM1-41 cells and COS-M6 cells detected PLCbeta1 and PLCbeta3, but not PLCbeta2. In PHM1-41 cells, pertussis toxin reduced the oxytocin-stimulated increase in 3H]inositol 1,3,4-trisphosphate by 53%, and this was reversed completely by H-89. Thus, the inhibitory effect of pertussis toxin may result from an indirect effect of cAMP elevation. These data suggest that receptor/G alpha(q)-coupled stimulation of PLCbeta1 or PLCbeta3 can be inhibited by cAMP through a phosphorylation mechanism involving protein kinase A that does not involve PLCbeta2. In smooth muscle, this mechanism could constitute potentially important cross-talk between pathways regulating contraction and relaxation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号