首页 | 本学科首页   官方微博 | 高级检索  
     

海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能
引用本文:孙将皓,邵彦峥,魏春艳,王迎.海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J].纺织学报,2023,44(4):24-31.
作者姓名:孙将皓  邵彦峥  魏春艳  王迎
作者单位:大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
基金项目:辽宁省自然科学基金指导计划项目(2019-ZD-0295)
摘    要:为提升海藻酸钠(SA)/氧化石墨烯(GO)复合纤维对阳离子染料的吸附性能及其力学性能,以轻质碳酸钙作为成孔剂,马来酸酐接枝氧化石墨烯(MAH-GO)微粒作为增强剂,SA作为基体,采用湿法纺丝与冷冻干燥法,经酸性置换制备SA/MAH-GO微孔气凝胶纤维,并对其化学结构、形貌和粒度进行分析,探讨了MAH-GO质量分数对微孔气凝胶纤维断裂强度的影响,采用吸附动力学及吸附等温线模型对吸附实验数据进行拟合分析。结果表明:MAH-GO质量分数为0.5%时,SA/MAH-GO微孔气凝胶纤维的拉伸断裂强度最优,为0.513 cN/dtex,与SA/GO气凝胶纤维断裂强度相比提高了11.51%,其吸附过程符合准二级吸附动力学模型,主要受到化学吸附机制控制,对亚甲基蓝最大吸附量可达2 400.66 mg/g。

关 键 词:改性氧化石墨烯  轻质碳酸钙  海藻酸钠  气凝胶  吸附性能  阳离子染料
收稿时间:2021-11-22

Preparation and adsorption analysis of sodium alginate/graphene oxide microporous aerogel fiber
SUN Jianghao,SHAO Yanzheng,WEI Chunyan,WANG Ying.Preparation and adsorption analysis of sodium alginate/graphene oxide microporous aerogel fiber[J].Journal of Textile Research,2023,44(4):24-31.
Authors:SUN Jianghao  SHAO Yanzheng  WEI Chunyan  WANG Ying
Affiliation:School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
Abstract:Objective The pollution of dye wastewater to the environment is the main factor restricting the large-scale production of the textile industry. Sodium alginate (SA) and graphene oxide (GO) both have good adsorption on residual dyes in dye wastewater. This paper reports a research that combines sodium alginate and graphene oxide are for fiber spinning, and studies the adsorption of dye wastewater of the composite fiber for the optimal absorption effect and recovery of adsorbent materials.Method In this research, graphene oxide was used as an additive, sodium alginate was used as the main material of the gel, where graphene oxide was grafted with maleic anhydride for modification. SA/MAH-GO (modified graphene oxide) composite adsorbent material was prepared by wet spinning, microscopic pore-forming, freeze-drying, and so on. Fourier infrared spectrometer, differential scanning calorimeter, scanning electron microscope, X-ray diffractometer, particle size analyzer and other instruments were used to test and characterize the product. Additionally, an ultraviolet spectrophotometer and a fiber tensile breaking strength meter were used to compare its adsorption properties and physical and mechanical properties.Results At the microscopic level, the chemical structure and particle size of GO have changed after grafting with maleic anhydride. FT-IR test showed that the infrared spectrum of MAH-GO particles illustrated an ester base vibration peak at 1 101 cm-1, which proved that maleic anhydride was successfully grafted onto the GO surface lamellar (as shown in Fig. 1). After ultrasonic dispersion, the particle size of MAH-GO in the water medium is mainly distributed within 191.2 nm, much smaller than GO particle size (9 669.8 nm), and the dispersion of MAH-GO is obviously better than GO particle. The experimental results show that trace amounts of modified graphene oxide (MAH-GO) have a certain optimization effect on the physical and mechanical properties of SA/MAH-GO microporous aerogel fibers. On the other hand, the special structure of microporous aerogel fibers has improved its adsorption capacity of methylene blue dyes. When the mass fraction of MAH-GO is 0.5%, the maximum tensile breaking strength is 0.513 cN/dtex, the breaking strength is increased by 11.51% compared with unmodified GO, and the breaking strength is increased by 81.27% compared with the microporous SA aerogel fiber (as shown in Fig. 4). Microporous aerogel fibers containing 0.75% MAH-GO demonstrated a higher removal rate of methylene blue, and the removal rate is always above 80% in the mass concentration range of 200 mg/L to 1 800 mg/L, and the maximum adsorption capacity can reach 2 400.6 mg/g (as shown in Fig. 6 and 7).The fitting results of the quasi-secondary kinetic adsorption model and the Langmuir isotherm adsorption model prove that the adsorption process involves electron sharing or transfer between the adsorbent and the adsorbate.Conclusion Composite adsorption materials have good development prospects for adsorption of polluted wastewater. The raw materials such as calcium carbonate particles and sodium alginate used in the preparation of micro-porous adsorption fiber are cheap. When the mass fraction of MAH-GO is controlled within 0.75%, the cost actual treatment of low concentration methylene blue pollutants can be further controlled. To sum up, there are some suggestions for the next research of this topic. Firstly, the organic solvent DMF is used in the esterification process of graphene oxide, which can be recycled by vacuum distillation, but it is time-consuming and energy-consuming. Environmental friendly solvents and modified catalytic methods such as ultraviolet photocatalysis should be selected. Secondly, besides the pore-forming method, mineral materials such as bentonite, montmorillonite and diatomite can also expose more potential adsorption sites for sodium alginate composites and improve the adsorption potential of composites for cations, which deserves further exploration.
Keywords:modified graphene oxide  light calcium carbonate  sodium alginate  aerogel  adsorption performance  cationic dye  
点击此处可从《纺织学报》浏览原始摘要信息
点击此处可从《纺织学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号