首页 | 本学科首页   官方微博 | 高级检索  
     

原液着色聚酯纤维原位聚合用自分散纳米炭黑的制备及其性能
引用本文:宋伟广,王冬,杜长森,梁栋,付少海. 原液着色聚酯纤维原位聚合用自分散纳米炭黑的制备及其性能[J]. 纺织学报, 2023, 44(4): 115-123. DOI: 10.13475/j.fzxb.20220201209
作者姓名:宋伟广  王冬  杜长森  梁栋  付少海
作者单位:1.江苏省纺织品数字喷墨印花工程技术研究中心(江南大学), 江苏 无锡 2141222.苏州世名科技股份有限公司, 江苏 苏州 215337
基金项目:国家重点研发计划项目(2020YFB0311401);江苏省自然科学基金项目(BK20190613)
摘    要:针对原液着色聚酯纤维原位聚合用乙二醇基色浆储存稳定性差、运输成本高的问题,采用控制变量法研究炭黑、分散剂、分散工艺对自分散纳米炭黑的影响,利用响应面优化试验,探讨制备过程中分散剂质量分数、研磨时间、研磨转速对自分散纳米炭黑粒径的影响,得出最优研磨分散条件。借助透射电子显微镜、热重分析仪、接触角测量仪等探究了自分散纳米炭黑的表观形貌、耐热性能和亲水性能等。结果表明:选用SUA-305作为分散剂,AP-104H作为炭黑,在分散剂质量分数为30%,研磨时间为2 h,研磨转速为3 500 r/min时,自分散纳米炭黑粒径最小,为85 nm,多分散性指数(PDI)为0.163,储存稳定性优良,预估储存周期为26.8个月;自分散纳米炭黑与乙二醇的接触角为7°,并展现出良好的自分散性能;自分散纳米炭黑的耐热性良好,满足在聚酯聚合阶段280℃不分解的要求。

关 键 词:自分散  纳米炭黑  原液着色  聚酯纤维  响应面优化
收稿时间:2022-02-11

Preparation and properties of self-dispersed nanoscale carbon black for in-situ polymerization of spun-dyed polyester fiber
SONG Weiguang,WANG Dong,DU Changsen,LIANG Dong,FU Shaohai. Preparation and properties of self-dispersed nanoscale carbon black for in-situ polymerization of spun-dyed polyester fiber[J]. Journal of Textile Research, 2023, 44(4): 115-123. DOI: 10.13475/j.fzxb.20220201209
Authors:SONG Weiguang  WANG Dong  DU Changsen  LIANG Dong  FU Shaohai
Affiliation:1. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing (Jiangnan University), Wuxi, Jiangsu 214122, China2. Suzhou Sunmun Technology Co., Ltd., Suzhou, Jiangsu 215337, China
Abstract:Objective The traditional polyester fiber spun-dyed mostly uses in-situ polymerization method to prepare high-performance colored polyester chips, where the carbon black grinding is dispersed in the ethylene glycol, and the carbon black ethylene glycol color paste is applied to the in-situ polymerization of polyester. However, conventional carbon black ethylene glycol color paste have poor storage stability and high transportation cost. In view of this problem, this study uses spray drying method to make self-dispersed nanoscale carbon black, aiming to effectively decrease transportation cost and improve the storage stability of carbon black in ethylene glycol.Method In this study, nanoscale carbon black paste was prepared into self-dispersed nanoscale carbon black by a spray-drying method. The effects of carbon black, dispersant and dispersion process on self-dispersed nanoscale carbon black were parametrically studied. The effects of mass fraction of dispersant, grinding time and grinding speed on the particle size of self-dispersed nanoscale carbon black were discussed based on the response surface optimization experiment in order to obtain the optimal grinding and dispersion conditions. In addition, transmission electron microscope (TEM), thermogravimetric analysis (TGA) and contact angle meter were employed to study the apparent morphology, heat resistance and hydrophilicity.Results Parametrical study was carried out to investigate the influence of dispersant and carbon black on the particle size of self-dispersed nanoscale carbon black. When the dispersant SUA-305 and the carbon black AP-104H were selected, the particle size of self-dispersed nanoscale carbon black was found to be the smallest (Fig. 2). The same method was used to study the influence of process conditions on the particle size and PDI (polydispersity index) of self-dispersed nanoscale carbon black. When the mass fraction of dispersant was 30%, the grinding time was 2 h, and the grinding speed was 3 500 r/min, the minimum particle sizes of self-dispersed nanoscale carbon black was 85 nm, and the minimum PDI was 0.163 (Fig. 3). The response surface was used to optimize the experiment, and the particle size was taken as the response value to further optimize the experimental results. The F-value in the model was 23.98 and the P-value was 0.000 2(Tab. 1). The minimum particle size of self-dispersed nanoscale carbon black were found on the three groups of response surfaces, and there were extreme values in the contour map, which were consistent with each other (Fig. 4). In order to determine the feasibility of the test, five groups of validation tests were conducted on the response surface model. The normalized deviation was 2.92%, and the normalized standard deviation was 1.544% (Tab. 2). The optimum process parameters were identified to be as follows: the mass fraction of dispersant is 30%, the grinding time is 2 h, and the grinding speed is 3 500 r/min. The original carbon black has a large particle size of 15.007 μm (Fig. 5). In comparison, the particle size of self-dispersed nanoscale carbon black is 0.085 μm, the contact angle between the original carbon black and ethylene glycol is 147°, and the contact angle between the ethylene glycol of self-dispersed nanoscale carbon black is 7° (Fig. 6). The original carbon black shows multiple agglomerations, and the self-dispersed nanoscale carbon black particles are small and evenly distributed. In Fig. 8, the self-dispersed nanoscale carbon black meets the requirement of decomposition resistant at 280 ℃ (Fig. 7). The self-dispersed nanoscale carbon black ethylene glycol color paste was centrifuged for 19 h at 4 000 r/min, its color paste sedimentation rate is 0.772 %/h, and the estimated storage period is 26.8 months (Fig. 9).Conclusion This study evaluated the influence of five factors (dispersant, carbon black, dispersant mass fraction, and grinding time, grinding speed) on the particle size of self-dispersed nanoscale carbon black. Response surface methodology was used to optimize the three factors (mass fraction of dispersant, grinding time and grinding speed) in the preparation process of self-dispersed nanoscale carbon black. The variance analysis results of the optimization process show that the regression model is significant, which indicates that the reliability of the response surface model fitting equation is high, and the best process obtained from this model is feasible. Under the technological conditions that the mass fraction of dispersant is 30%, and the grinding time is 2 h, and the grinding speed is 3 500 r/min, the minimum particle size of self-dispersed nanoscale carbon black is 85 nm. The self-dispersed nanoscale carbon black demonstrates good hydrophilicity, good self-dispersion in ethylene glycol solution, and good heat resistance, meeting the preparation requirements of in-situ polymerization polyester fiber chips. The self-dispersed nanoscale carbon black ethylene glycol color paste has good storage stability with an estimated storage period of 26.8 months under the simulated natural sedimentation conditions.
Keywords:self-dispersed  nanoscale carbon black  spun-dyed  polyester fiber  response surface optimization  
点击此处可从《纺织学报》浏览原始摘要信息
点击此处可从《纺织学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号