首页 | 本学科首页   官方微博 | 高级检索  
     


State-of-the-art on theories and applications of cable-driven parallel robots
Authors:Zhaokun ZHANG  Zhufeng SHAO  Zheng YOU  Xiaoqiang TANG  Bin ZI  Guilin YANG  Clément GOSSELIN  Stéphane CARO
Abstract:Cable-driven parallel robot (CDPR) is a type of high-performance robot that integrates cable-driven kinematic chains and parallel mechanism theory. It inherits the high dynamics and heavy load capacities of the parallel mechanism and significantly improves the workspace, cost and energy efficiency simultaneously. As a result, CDPRs have had irreplaceable roles in industrial and technological fields, such as astronomy, aerospace, logistics, simulators, and rehabilitation. CDPRs follow the cutting-edge trend of rigid–flexible fusion, reflect advanced lightweight design concepts, and have become a frontier topic in robotics research. This paper summarizes the kernel theories and developments of CDPRs, covering configuration design, cable-force distribution, workspace and stiffness, performance evaluation, optimization, and motion control. Kinematic modeling, workspace analysis, and cable-force solution are illustrated. Stiffness and dynamic modeling methods are discussed. To further promote the development, researchers should strengthen the investigation in configuration innovation, rapid calculation of workspace, performance evaluation, stiffness control, and rigid–flexible coupling dynamics. In addition, engineering problems such as cable materials, reliability design, and a unified control framework require attention.
Keywords:cable-driven parallel robot  kinematics  optimization  dynamics  control  
点击此处可从《Frontiers of Mechanical Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Mechanical Engineering》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号