On the scaling limit of ultrathin SOI MOSFETs |
| |
Authors: | Wei-Yuan Lu Yuan Taur |
| |
Affiliation: | Dept. of Electr. & Comput. Eng., Univ. of California, La Jolla, CA, USA; |
| |
Abstract: | In this paper, a detailed study on the scaling limit of ultrathin silicon-on-insulator (SOI) MOSFETs is presented. Due to the penetration of lateral source/drain fields into standard thick buried oxide, the scale-length theory does not apply to thin SOI MOSFETs. An extensive two-dimensional device simulation shows that for a thin gate insulator, the minimum channel length can be expressed as L/sub min//spl ap/4.5(t/sub Si/+(/spl epsiv//sub Si///spl epsiv//sub I/)t/sub I/), where t/sub Si/ is the silicon thickness, and /spl epsiv//sub I/ and t/sub I/ are the permittivity and thickness of the gate insulator. With t/sub Si/ limited to /spl ges/ 2 nm from quantum mechanical and threshold considerations, a scaling limit of L/sub min/=20 nm is projected for oxides, and L/sub min/=10 nm for high-/spl kappa/ dielectrics. The effect of body doping has also been investigated. It has no significant effect on the scaling limit. |
| |
Keywords: | |
|
|