Darcy's law for two‐dimensional flows: Singularities at corners and a new class of models |
| |
Authors: | Yulii D. Shikhmurzaev |
| |
Affiliation: | School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom of Great Britain and Northern Ireland |
| |
Abstract: | As is known, Darcy's model for fluid flows in isotropic homogeneous porous media gives rise to singularities in the velocity field for essentially two‐dimensional flow configuration, like flows over corners. Considering this problem from the modeling viewpoint, this study aims at removing this singularity, which cannot be regularized via conventional generalizations of the Darcy model, like Brinkman's equation, without sacrificing Darcy's law itself for unidirectional flows where its validity is well established experimentally. The key idea is that as confirmed by a simple analogy, the permeability of a porous matrix with respect to flow is not a constant independent of the flow but a function of the flow field (its scalar invariants), decreasing as the curvature of the streamlines increases. This introduces a completely new class of models where the flow field and the permeability field are linked and, in particular problems, have to be found simultaneously. © 2017 American Institute of Chemical Engineers AIChE J, 2017 |
| |
Keywords: | mathematical modeling porous media Darcy's law velocity singularity curvature of streamlines |
|
|