首页 | 本学科首页   官方微博 | 高级检索  
     


Particle size effect on the catalyst attrition in a lab‐scale fluidized bed
Authors:Dongfang Wu  Fanghua Wu  Yongdan Li
Affiliation:1. Dept. of Chemical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, China;2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, and State Key Laboratory of Chemical Engineering, (Tianjin University), School of Chemical Engineering, Tianjin University, Tianjin, China
Abstract:Catalysts readily suffer from particle attrition in fluidized beds. In this article, a commercial fluid catalytic cracking catalyst was sieved into several particle‐size intervals to investigate the size effect on particle attrition. It is shown that an exponential decay equation presents a suitable description of attrition and that catalyst attrition is dependent on particle size. Steady‐state specific attrition rate decreases with increasing particle size; however, initial specific attrition rate and decay time parameter change irregularly. For comparison of attrition resistances, a long attrition test is required to reach steady‐state attrition, and the steady‐state specific attrition rate is recommended. It is seen that the smallest particle‐size interval is the most seriously attrited, while the two largest particle‐size intervals are the most attrition‐resistant. Furthermore, weak interactions appear among attrition behaviors of different intervals, and a linear combination method is effective to combine all interval samples to predict the attrition of the original full‐sized sample. © 2016 American Institute of Chemical Engineers AIChE J, 63: 914–920, 2017
Keywords:particle size  particle attrition  attrition rate  fluid catalytic cracking  fluidized bed
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号