首页 | 本学科首页   官方微博 | 高级检索  
     


Mating programs including genomic relationships and dominance effects
Authors:C. Sun,P.M. VanRaden,J.R. O&rsquo  Connell,K.A. Weigel,D. Gianola
Affiliation:* National Association of Animal Breeders, Columbia, MO 65205; Animal Improvement Programs Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705-2350; School of Medicine, University of Maryland, Baltimore 21201;§ Department of Dairy Science, University of Wisconsin–Madison, Madison 53706
Abstract:Computerized mating programs using genomic information are needed by breed associations, artificial-insemination organizations, and on-farm software providers, but such software is already challenged by the size of the relationship matrix. As of October 2012, over 230,000 Holsteins obtained genomic predictions in North America. Efficient methods of storing, computing, and transferring genomic relationships from a central database to customers via a web query were developed for approximately 165,000 genotyped cows and the subset of 1,518 bulls whose semen was available for purchase at that time. This study, utilizing 3 breeds, investigated differences in sire selection, methods of assigning mates, the use of genomic or pedigree relationships, and the effect of including dominance effects in a mating program. For both Jerseys and Holsteins, selection and mating programs were tested using the top 50 marketed bulls for genomic and traditional lifetime net merit as well as 50 randomly selected bulls. The 500 youngest genotyped cows in the largest herd in each breed were assigned mates of the same breed with limits of 10 cows per bull and 1 bull per cow (only 79 cows and 8 bulls for Brown Swiss). A dominance variance of 4.1 and 3.7% was estimated for Holsteins and Jerseys using 45,187 markers and management group deviation for milk yield. Sire selection was identified as the most important component of improving expected progeny value, followed by managing inbreeding and then inclusion of dominance. The respective percentage gains for milk yield in this study were 64, 27, and 9, for Holsteins and 73, 20, and 7 for Jerseys. The linear programming method of assigning a mate outperformed sequential selection by reducing genomic or pedigree inbreeding by 0.86 to 1.06 and 0.93 to 1.41, respectively. Use of genomic over pedigree relationship information provided a larger decrease in expected progeny inbreeding and thus greater expected progeny value. Based on lifetime net merit, the economic value of using genomic relationships was >$3 million per year for Holsteins when applied to all genotyped females, assuming that each will provide 1 replacement. Previous mating programs required transferring only a pedigree file to customers, but better service is possible by incorporating genomic relationships, more precise mate allocation, and dominance effects. Economic benefits will continue to grow as more females are genotyped.
Keywords:mating program   genomic relationship   dominance   genotype
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号