首页 | 本学科首页   官方微博 | 高级检索  
     

一种带混沌变异的粒子群优化算法
引用本文:朱红求,阳春华,桂卫华,李勇刚. 一种带混沌变异的粒子群优化算法[J]. 计算机科学, 2010, 37(3): 215-217
作者姓名:朱红求  阳春华  桂卫华  李勇刚
作者单位:中南大学信息科学与工程学院,长沙,410083
基金项目:国家自然科学基金(60874069,60804037);;湖南省自然科学基金(09JJ3122);;国家863项目(2009AA04Z124,2009AA04Z137)资助
摘    要:为了克服粒子群算法在进化后期存在收敛速度慢、易陷入局部极小等问题,提出了一种混沌变异粒子群优化算法。该算法根据群体适应度变化率对种群中非优胜粒子进行变异操作,并对全局最优位置进行小范围混沌扰动,以增强算法跳出局部最优的能力。对几种复杂典型函数与标准粒子群算法进行了仿真测试,结果表明该算法明显改善了全局搜索能力和抗早熟收敛性能。

关 键 词:粒子群  混沌变异  早熟收敛  
收稿时间:2009-04-24
修稿时间:2009-07-20

Particle Swarm Optimization with Chaotic Mutation
ZHU Hong-qiu,YANG Chun-hu,GUI Wei-hu,LI Yong-gang. Particle Swarm Optimization with Chaotic Mutation[J]. Computer Science, 2010, 37(3): 215-217
Authors:ZHU Hong-qiu  YANG Chun-hu  GUI Wei-hu  LI Yong-gang
Affiliation:School of Information Science&Engineering/a>;Central South University/a>;Changsha 410083/a>;China
Abstract:To overcome the disadvantage of low convergence speed and the premature convergence during the later computation period of particle swarm optimization, a chaotic particle swarm optimization (CPSO) was proposed. Aimed to improve the ability to break away from the local optimum and to find the global optimum, the non-winner particles were mutated by chaotic search and the global best position was mutated using the small extent of disturbance according to the variance ratio of population's fitness. The numerical simulation comparing to the standard PSO was performed using of complex benchmark functions with high dimension. The results show that the proposed algorithm can effectively improve both the global searching ability and much better ability of avoiding prcmaturity.
Keywords:Particle swarm optimization  Chaotic mutation  Premature convergence  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号