首页 | 本学科首页   官方微博 | 高级检索  
     

基于S变换的电能质量扰动支持向量机分类识别
引用本文:占勇,程浩忠,丁屹峰,吕干云,孙毅斌. 基于S变换的电能质量扰动支持向量机分类识别[J]. 中国电机工程学报, 2005, 25(4): 0-56
作者姓名:占勇  程浩忠  丁屹峰  吕干云  孙毅斌
作者单位:1. 上海交通大学电气工程系,上海市,闵行区,200240
2. 上海市区供电公司调度所,上海市,黄浦区,200080
基金项目:高等学校优秀青年教师教学科研奖励计划项目。
摘    要:采用s变换和支持向量机进行电能质量扰动的分类识别。作为连续小波变换和短时傅立叶变换的发展,S变换引入了宽度与频率成反向变化的高斯窗,具有与频率相关的分辨率。由于S变换具有良好的时频特性,因而非常适合于进行电能质量扰动信号特征提取。首先通过S变换进行扰动信号特征提取,然后构造支持向量机分类树进行扰动分类。算例表明该方案具有分类准确率高,对噪声不敏感,训练样本少等优点,是电能质量扰动识别的有效方法。

关 键 词:电力系统 电能质量 支持向量机 S变换 扰动识别 小波变换
文章编号:0258-8013(2005)04-0051-06
收稿时间:2004-03-31
修稿时间:2004-07-08

S-TRANSFORM-BASED CLASSIFICATION OF POWER QUALITY DISTURBANCE SIGNALS BY SUPPORT VECTOR MACHINES
ZHAN Yong,CHENG Hao-zhong,DING Yi-feng,U Gan-yun,SUN Yi-bin. S-TRANSFORM-BASED CLASSIFICATION OF POWER QUALITY DISTURBANCE SIGNALS BY SUPPORT VECTOR MACHINES[J]. Proceedings of the CSEE, 2005, 25(4): 0-56
Authors:ZHAN Yong  CHENG Hao-zhong  DING Yi-feng  U Gan-yun  SUN Yi-bin
Abstract:Based on Support Vector Machines (SVM) and S-transform, a novel approach to detect and classify various types of electric power quality disturbances is presented. The S-transform is an extension of the continuous wavelet transform and short time Fourier transform, it uses an analysis window whose width is decreasing with frequency and then providing a frequency dependent resolution. For its good time-frequency characteristic, it is suitable for feature extraction of power quality disturbance signals. At first the S-transform is applied to obtain useful features of the non-stationary power quality disturbance signals. Then disturbance types are identified through the pattern recognition classifier based on SVM. Numerical results show that the proposed classification method is an effective technique for building up a pattern recognition system for power network disturbance signals.
Keywords:Power system  Power quality  Disturbance classification  S-transform  Support Vector Machines
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《中国电机工程学报》浏览原始摘要信息
点击此处可从《中国电机工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号