首页 | 本学科首页   官方微博 | 高级检索  
     


Fibronectin fragments modulate human retinal capillary cell proliferation and migration
Authors:MB Grant  S Caballero  DM Bush  PE Spoerri
Affiliation:Department of Medicine, University of Florida, Gainesville 32610-0226, USA. grantmb@medicine.ufl.edu
Abstract:Capillary morphogenesis involves cell-cell and cell-matrix interactions. Proteases elaborated by capillary cells modify the extracellular matrix (ECM) to facilitate capillary tube formation. Previously, we detected the presence of fibronectin fragments (Fn-f) associated with the proform of matrix metalloprotease-2 (MMP-2) in conditioned medium of human retinal endothelial cells (HRECs). Association of this fragment to latent MMP-2 prevented autocatalytic activation of MMP-2, suggesting a modulatory role of Fn-f in MMP-2 activation. In this report, we examined the potential role of Fn-f on two processes involved in angiogenesis, proliferation and migration of vascular cells. The effects of Fn-f on proliferation were determined by DNA synthesis and cell counts. Their effects on migration were assessed using modified Boyden chambers. Seven Fn-f were tested on vascular cell migration and/or proliferation. Three Fn-f induced migration. Fn-f of 30-kDa and 120-kDa size positively affected proliferation of microvascular cells but not macrovascular cells. A 45-kDa gelatin binding fragment of Fn inhibited HREC proliferation but stimulated pericyte and smooth muscle cell proliferation. The potency of these fragments exceeded that of the known angiogenic growth factor, basic fibroblast growth factor (bFGF), on HREC migration. ECM components such as fibronectin may influence capillary morphogenesis by the generation of fragments that can modulate proliferation, migration, and protease activation. In the setting of diabetes, excess Fn is generated and is available for degradation. Thus, the production of Fn-f may be specifically relevant to the angiogenesis observed in proliferative diabetic retinopathy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号