首页 | 本学科首页   官方微博 | 高级检索  
     

电沉积ZnO纳米柱的光学带隙与非辐射复合EI北大核心CSCD
引用本文:汤洋.电沉积ZnO纳米柱的光学带隙与非辐射复合EI北大核心CSCD[J].材料工程,2022,50(3):90-97.
作者姓名:汤洋
作者单位:1.国家能源集团 绿色能源与建筑研究中心, 北京 1022112 北京低碳清洁能源研究院, 北京 102211
基金项目:国家自然科学基金项目(61404007);
摘    要:为实现ZnO纳米柱阵列材料在新型纳米结构化太阳能电池中的应用,需要对纳米柱的几何形貌与光电特性进行调控。ZnO纳米柱阵列材料的制备方法为电化学沉积方法。通过在生长溶液中使用In(NO_(3))_(3)和NH_(4)NO_(3),实现了对纳米柱的直径、阵列密度、柱间距、光学带隙、近带边发射、斯托克斯位移等物理性质的调控。采用扫描电子显微镜、X射线衍射仪、分光光度计、光致发光测试仪对样品的形貌、晶体性质、透射反射性质、光致发光性质进行测试与表征。结果表明,使用NH_(4)NO_(3)将紧密排列的ZnO纳米柱阵列密度降低了51%,导致柱间距增大至超过100 nm,同时可将纳米柱的直径降低至22 nm。使用In(NO_(3))_(3)使ZnO纳米柱的光学带隙展宽100 meV。通过NH_(4)NO_(3)的使用可在3.41 eV至3.55 eV范围内调控带隙。由于NH_(4)NO_(3)的引入,ZnO纳米柱的斯托克斯位移可降低至19 meV,表明NH_(4)NO_(3)的引入能够有效地抑制纳米柱阵列中的非辐射复合。

关 键 词:氧化锌  硝酸铵  硝酸铟  电沉积  光学带隙  非辐射复合
收稿时间:2020-03-17

Optical gap energy of eletrodeposited ZnO nanorods and its non-radiative recombination
TANG Yang.Optical gap energy of eletrodeposited ZnO nanorods and its non-radiative recombination[J].Journal of Materials Engineering,2022,50(3):90-97.
Authors:TANG Yang
Affiliation:1.Center for Green Energy and Architecture, China Energy Investment Corporation, Beijing 102211, China2 National Institute of Clean- and-Low-Carbon Energy, Beijing 102211, China
Abstract:In order to achieve the applications of the ZnO nanorod arrays in the novel nanostructured solar cells, it is necessary to tailor and control the nanorods' morphological, optical and electrical properties. The ZnO nanorods arrays were fabricated by electrodeposition. The physical properties such as the diameter, density, distance, optical band gap energy, near band emission and Stokes shift can be adjusted by the use of In(NO3)3 and NH4NO3.The characterizations such as scanning electron microscopy, X-ray diffraction spectrometer and photoluminescence were used to measure the samples' morphology, crystal property, transmission and reflection and photoluminescence properties. According to the measurement results, the ZnO nanorod arrays' density is reduced to 5.9×109 cm-2 and the distance between nanorods is enlarged to 108 nm by using NH4NO3. The nanorods' diameter is decreased to 22 nm. The use of In(NO3)3 leads to the blue shift of the ZnO nanorods' optical band gap energy by 100 meV. The optical band gap energy is further tailored between 3.41 eV and 3.55 eV by using NH4NO3. The ZnO nanorods' Stokes shift can be decreased to 19 meV by using NH4NO3, resulting in the effective suppression of the non-radiative recombination.
Keywords:ZnO  ammonium nitrate  indium nitrate  electrodeposition  optical band gap  non-radiative recombination  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《材料工程》浏览原始摘要信息
点击此处可从《材料工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号