首页 | 本学科首页   官方微博 | 高级检索  
     

基于GAN的雷达HRRP数据增强方法
引用本文:周强,王彦华,宋益恒,李阳. 基于GAN的雷达HRRP数据增强方法[J]. 信号处理, 2022, 38(1): 92-99. DOI: 10.16798/j.issn.1003-0530.2022.01.011
作者姓名:周强  王彦华  宋益恒  李阳
作者单位:1.北京理工大学信息与电子学院雷达技术研究所,北京 100081
基金项目:国家重点研发计划(2018YFE0202101,2018YFE0202102,2018YFE0202103);国家自然科学基金(61701026)。
摘    要:在雷达自动目标识别(RATR)中,数据驱动方法是强有力的工具之一.然而数据驱动方法的性能十分依赖数据集的质量,数据增强方法通过扩充数据集,能够提升数据驱动模型在现有数据集上的识别率.本文提出了用于高分辨距离像(HRRP)数据生成的一维基础生成对抗网络(BGAN)结构和条件生成对抗网络(CGAN)结构,并利用生成的人工样...

关 键 词:雷达目标识别  高分辨距离像  数据增强  生成对抗网络
收稿时间:2021-03-02

Radar HRRP Data Enhancement Method Based on GAN
ZHOU Qiang,WANG Yanhua,SONG Yiheng,LI Yang. Radar HRRP Data Enhancement Method Based on GAN[J]. Signal Processing(China), 2022, 38(1): 92-99. DOI: 10.16798/j.issn.1003-0530.2022.01.011
Authors:ZHOU Qiang  WANG Yanhua  SONG Yiheng  LI Yang
Affiliation:1.Radar Research Laboratory,School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China2.Beijing Key Laboratory of Embedded Real-time Information Processing Technology,Beijing 100081,China3.Beijing Institute of Technology Chongqing Innovation Center,Chongqing 401120,China
Abstract:In Radar Automatic Target Recognition (RATR), data-driven models have proven to be a powerful tool. However, the performance of the data-driven models were dependent on the quality of the data set. The data enhancement method could improve the recognition performance of the data-driven models on the existing data set by expanding the data set. This paper proposes a one-dimensional basic generative adversarial network (BGAN) structure and a conditional generative adversarial network (CGAN) structure for high resolution range profile (HRRP) data generation. Then using the generated artificial samples to complete the data enhancement. Experiments show that the two networks proposed in this paper can effectively improve the accuracy of target recognition, and the performance is better than the traditional translation and mirroring enhancement methods. The BGAN-based HRRP data enhancement method has the best performance, but its time and space complexity are relatively high; the CGAN-based data enhancement method can reduce the time and space complexity of the model while ensuring the increase in accuracy, and has high application prospects. 
Keywords:radar target recognition  high-resolution range profile  data enhancement  generative adversarial network
本文献已被 维普 等数据库收录!
点击此处可从《信号处理》浏览原始摘要信息
点击此处可从《信号处理》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号