首页 | 本学科首页   官方微博 | 高级检索  
     


Cu2O nanowires based p-n homojunction photocathode for improved current density and hydrogen generation through solar-water splitting
Affiliation:Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
Abstract:Hydrogen generation through solar-water splitting is expected to address the global energy crisis by providing a source for a safer and sustainable alternative fuel. Herein, we report a facile synthesis of Cu2O nanowires and show that the magnetic field could influence the nanowires’ distribution and alignment. Orientation of nanowires was observed to become more inclined towards the magnetic field lines as the values of full-width at half maximum decreased from 140° to 46.2° with the increase in the field strength. Crystallographic, morphological, optoelectronic, and photoelectrochemical properties of the constructed p-n homojunction were analyzed by using different characterization techniques. A high built-in potential of +0.93 V vs. RHE was observed for a 50 nm layer of n-Cu2O over p-Cu2O nanowires that resulted in a significantly high photocurrent density of −7.42 mA/cm2. The stability in the photoelectrochemical medium was maintained for 14 h, generating 20 mmol/cm2 of H2.
Keywords:Solar-water splitting  Hydrogen generation  Faradaic efficiency
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号