首页 | 本学科首页   官方微博 | 高级检索  
     


Underwater vehicle hydrogen production from methanol steam reforming using hydrogen peroxide
Affiliation:Agency for Defense Development, Yuseong, P.O.Box 35, Daejeon, 34186, Republic of Korea
Abstract:Methanol steam reforming (MSR) can supply hydrogen (H2) to underwater vehicles equipped with a fuel cell. Low reaction temperatures ensure the composition of the reformed gas suitable for the H2 purification unit and increase the design freedom of a reforming plant. However, such temperatures decrease the catalyst activity and thereby the methanol (MeOH) conversion and H2 production. Herein, hydrogen peroxide (H2O2) was supplied with MeOH and water (H2O) to ensure sufficient MeOH conversion and H2 production at low temperatures. A tube reactor loaded with a commercial Cu/Zn catalyst was installed in an electric furnace maintained at 200–250 °C, and MeOH and 0 wt%, 11.88 wt%, 22.51 wt%, and 32.07 wt% H2O2 were supplied. When the furnace temperature was 200 °C, the MeOH conversion was 49.3% at 0 wt% H2O2 but 93.5% at 32.07 wt% H2O2. The effect of adding H2O2 was greater under the temperature conditions where the MeOH conversion was 100% or less. To analyze the effect of H2O2 addition on catalyst durability, the furnace was maintained at 200 °C, and the reactor was continuously operated for 110 h with 0 wt% and 32.07 wt% H2O2. The addition of H2O2 did not significantly decrease the Cu/Zn catalyst durability.
Keywords:Methanol  Steam reforming  Hydrogen peroxide  Methanol conversion  Hydrogen  Underwater vehicle
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号