首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental study on combustion stability and performance of hydrogen-enriched compressed natural gas of a free-piston linear generator
Affiliation:1. Centre for Automotive Research and Electric Mobility, Universiti Teknologi PETRONAS, Perak, Malaysia;2. Mechanical Engineering Department, University of Bahri, Khartoum Bahri, Khartoum, Sudan
Abstract:Free Piston linear Generator (FPLG) engine fueled by compressed natural gas (CNG) has recently gained increased research attention. However, due to the low-velocity burning and poor lean limit of CNG fuel, the FPLG engine combustion stability, performance, and efficiency are still low. Hydrogen has a greater burning velocity with wider flame limits that could extend the lean burn limits and combustion characteristics of CNG. This paper compares pure CNG and 10% hydrogen-enriched CNG at various ignition speeds (0.6 ms, 0.8 m/s, and 1 m/s), injection positions (0 mm, 5 mm, 10 mm and 15 mm), and lambda ratios (0.9, 1.4 and 1.7) on the combustion characteristics, performance, and conversion efficiency are duly discussed. The findings show that the FPLG combustion stability limits increase with the hydrogen addition into the CNG. The CNG in-cylinder pressure increases significantly when the injection position is advanced, whereas the hydrogen addition reduces the influence of the injection position. The heat release rate increases by 15.62% and 23.72% with hydrogen addition, corresponding to the advanced and retarded injection positions. Consequently, the hydrogen addition increases the power RMS to 209.21 W and 232.64 W with an increment of 3.46% and 3.13%, respectively. Conclusively, the hydrogen addition into the CNG evidently shortens the combustion duration while improving the heat release rate, combustion stability, power RMS, Cycle-to-Cycle variation, and conversion efficiency.
Keywords:Free-piston  Hydrogen  Compressed natural gas  Heat release rate  Lambda  Power RMS
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号