首页 | 本学科首页   官方微博 | 高级检索  
     


Rice husk derived graphene-like material: Activation with phosphoric acid in the absence of inert gas for hydrogen gas storage
Affiliation:1. Advanced Membrane Technology Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia;2. School of Chemical and Energy Engineering (FCEE), Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia;3. Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
Abstract:In this study, the effect of concentration of phosphoric acid (H3PO4) towards the physicochemical properties of rice husk derived graphene (GRHA) in the absence of inert gas was investigated. From TGA analysis, it was found that GRHA 1:3 possessed the highest weight loss (24.66%) due to the highest reactivity towards H3PO4. The FTIR shows that graphene-like material was obtained as the –OH groups were vanished in GRHA structure after activation. Raman spectroscopy and XRD analysis indicated that the produced GRHA is in amorphous state and has few layers of graphene. GRHA 1:3 showed the greatest improvement in their porous structure including the highest surface area (315.07 m2/g) with the largest pore volume (0.2069 cm3/g) as compared to other samples. From the static adsorption test, it was confirmed that GRHA 1:3 stored the highest amount of hydrogen compared to other samples with 1.95 wt % contributed by its excellent porosity and surface area. To further understand the kinetics of hydrogen adsorption on GRHA, pseudo-first model and pseudo-second model was plotted. Pseudo second model was the best fitted model which indicated that the gas molecule adsorbed in the GRHA material via chemisorption. Additionally, from the kinetic study it was found that the adsorption process of GRHA 1:3 was controlled by multi-step adsorption process.
Keywords:Rice husk  Graphene  Chemical activation  Gas storage  Phosphoric acid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号