首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamic evaluation of hydrogen and electricity cogeneration coupled with very high temperature gas-cooled reactors
Affiliation:1. Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, China;2. Tsinghua University-Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, Tsinghua University, Beijing, 100084, China
Abstract:Hydrogen production using thermal energy, derived from nuclear reactor, can achieve large-scale hydrogen production and solve various energy problems. The concept of hydrogen and electricity cogeneration can realize the cascade and efficient utilization of high-temperature heat derive for very high temperature gas-cooled reactors (VHTRs). High-quality heat is used for the high-temperature processes of hydrogen production, and low-quality heat is used for the low-temperature processes of hydrogen production and power generation. In this study, two hydrogen and electricity cogeneration schemes (S1 and S2), based on the iodine-sulfur process, were proposed for a VHTR with the reactor outlet temperature of 950 °C. The thermodynamic analysis model was established for the hydrogen and electricity cogeneration. The energy and exergy analysis were conducted on two cogeneration systems. The energy analysis can reflect the overall performance of the systems, and the exergy analysis can reveal the weak parts of the systems. The analysis results show that the overall hydrogen and electricity efficiency of S1 is higher than that of S2, which are 43.6% and 39.2% at the hydrogen production rate of 100 mol/s, respectively. The steam generators is the components with the highest exergy loss coefficient, which are the key components for improving the system performance. This study presents a theoretical foundation for the subsequent optimization of hydrogen and electricity cogeneration coupled with VHTRs.
Keywords:VHTR  Hydrogen  Cogeneration  Energy analysis  Exergy analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号