首页 | 本学科首页   官方微博 | 高级检索  
     


Role of Curvature-Sensing Proteins in the Uptake of Nanoparticles with Different Mechanical Properties
Authors:Daphne Montizaan  Catherine Saunders  Keni Yang  Sajitha Sasidharan  Sourav Maity  Catharina Reker-Smit  Marc C. A. Stuart  Costanza Montis  Debora Berti  Wouter H. Roos  Anna Salvati
Affiliation:1. Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV The Netherlands;2. Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG The Netherlands;3. Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, 9747 AG The Netherlands;4. Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, Florence, 50019 Italy
Abstract:Nanoparticles of different properties, such as size, charge, and rigidity, are used for drug delivery. Upon interaction with the cell membrane, because of their curvature, nanoparticles can bend the lipid bilayer. Recent results show that cellular proteins capable of sensing membrane curvature are involved in nanoparticle uptake; however, no information is yet available on whether nanoparticle mechanical properties also affect their activity. Here liposomes and liposome-coated silica are used as a model system to compare uptake and cell behavior of two nanoparticles of similar size and charge, but different mechanical properties. High-sensitivity flow cytometry, cryo-TEM, and fluorescence correlation spectroscopy confirm lipid deposition on the silica. Atomic force microscopy is used to quantify the deformation of individual nanoparticles at increasing imaging forces, confirming that the two nanoparticles display distinct mechanical properties. Uptake studies in HeLa and A549 cells indicate that liposome uptake is higher than for the liposome-coated silica. RNA interference studies to silence their expression show that different curvature-sensing proteins are involved in the uptake of both nanoparticles in both cell types. These results confirm that curvature-sensing proteins have a role in nanoparticle uptake, which is not restricted to harder nanoparticles, but includes softer nanomaterials commonly used for nanomedicine applications.
Keywords:curvature-sensing proteins  liposome-coated silica  membrane curvature generation  nanoparticle rigidity  nanoparticle uptake
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号