首页 | 本学科首页   官方微博 | 高级检索  
     


Deterministic Magnetization Reversal in Synthetic Antiferromagnets using Natural Light
Authors:Yujing Du  Yifan Zhao  Lei Wang  Zhexi He  Yangyang Wu  Chenying Wang  Libo Zhao  Zhuangde Jiang  Ming Liu  Ziyao Zhou
Affiliation:1. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049 China;2. Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28 Xianning West Road Xi'an, Shaanxi, 710049 China;3. School of Mathematical Sciences, Tiangong University, Tianjin, 300387 China;4. State Key Laboratory for Manufacturing Systems Engineering, Collaborative Innovation Center of High-End Manufacturing Equipment, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Abstract:Traditional current-driven spintronics is limited by localized heating issues and large energy consumption, restricting their data storage density and operation speed. Meanwhile, voltage-driven spintronics with much lower energy dissipation also suffers from charge-induced interfacial corrosion. Thereby finding a novel way of tuning ferromagnetism is crucial for spintronics with energy-saving and good reliability. Here, a visible light tuning of interfacial exchange interaction via photoelectron doping into synthetic antiferromagnetic heterostructure of CoFeB/Cu/CoFeB/PN Si substrate is demonstrated. Then, a complete, reversible magnetism switching between antiferromagnetic (AFM) and ferromagnetic (FM) states with visible light on and off is realized. Moreover, a visible light control of 180° deterministic magnetization switching with a tiny magnetic bias field is achieved. The magnetic optical Kerr effect results further reveal the magnetic domain switching pathway between AFM and FM domains. The first-principle calculations conclude that the photoelectrons fill in the unoccupied band and raise the Fermi energy, which increases the exchange interaction. Lastly, a prototype device with visible light control of two states switching with a 0.35% giant magnetoresistance ratio change (maximal 0.4%), paving the way toward fast, compact, and energy-efficient solar-driven memories is fabricated.
Keywords:deterministic magnetization reversal  interfacial magnetoelectric coupling  photovoltaic control of magnetism  RKKY interaction  synthetic antiferromagnetism
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号