首页 | 本学科首页   官方微博 | 高级检索  
     


The Effect of Linker-to-Metal Energy Transfer on the Photooxidation Performance of an Isostructural Series of Pyrene-Based Rare-Earth Metal–Organic Frameworks
Authors:Victor Quezada-Novoa  Hatem M Titi  Francisco Yarur Villanueva  Mark W B Wilson  Ashlee J Howarth
Affiliation:1. Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, H4B 1R6 Canada;2. Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, H3A 0B8 Canada;3. Department of Chemistry, University of Toronto, 80 4. St. George Street, Toronto, Ontario, M5S 3H6 Canada
Abstract:The tetratopic linker, 1,3,6,8-tetrakis(p-benzoic acid)pyrene (H4TBAPy) along with rare-earth (RE) ions is used for the synthesis of 9 isostructures of a metal–organic framework (MOF) with shp topology, named RE-CU-10 (RE = Y(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III), and Lu(III)). The synthesis of each RE-CU-10 analogue requires different reaction conditions to achieve phase pure products. Single crystal X-ray diffraction indicates the presence of a RE9-cluster in Y- to Tm-CU-10, while a RE11-cluster is observed for Yb- and Lu-CU-10. The photooxidation performance of RE-CU-10 analogues is evaluated, observing competition between linker-to-metal energy transfer versus the generation of singlet oxygen. The singlet oxygen produced is used to detoxify a mustard gas simulant 2-chloroethylethyl sulfide, with half-lives ranging from 4.0 to 5.8 min, some of the fastest reported to date using UV-irradiation and < 1 mol% catalyst, in methanol under O2 saturation.
Keywords:2-chloroethyl ethyl sulfide  ligand-to-metal energy transfer  metal–organic frameworks  photooxidation  pyrene  rare-earth metals  singlet oxygen
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号