首页 | 本学科首页   官方微博 | 高级检索  
     


List update with probabilistic locality of reference
Authors:Reza Dorrigiv,Alejandro Ló  pez-Ortiz
Affiliation:Cheriton School of Computer Science, University of Waterloo, Waterloo, Ont., N2L 3G1, Canada
Abstract:In this paper we study the performance of list update algorithms under arbitrary distributions that exhibit strict locality of reference and prove that Move-To-Front (MTF) is the best list update algorithm under any such distribution. We also show that the performance of MTF depends on the amount of locality of reference, while the performance of any static list update algorithm is independent of the amount of locality.
Keywords:On-line algorithms   Analysis of algorithms   Data structures   List update   Locality of reference
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号