首页 | 本学科首页   官方微博 | 高级检索  
     

邻域特征在点云配准中的应用
引用本文:贺永兴,欧新良,匡小兰. 邻域特征在点云配准中的应用[J]. 计算机应用, 2012, 32(3): 762-765. DOI: 10.3724/SP.J.1087.2012.00762
作者姓名:贺永兴  欧新良  匡小兰
作者单位:1.湖南工业大学 计算机与通信学院,湖南 株洲 412008;2.长沙学院 计算机科学与技术系,长沙 410003;3.长沙商贸旅游职业技术学院 计算机科学与技术系,长沙 410003
基金项目:湖南省自然科学基金,湖南省教育厅科技重点项目
摘    要:针对大规模散乱点云的配准,提出一种基于邻域特征的配准方法,该方法由初始配准和精确配准组成。首先,对目标点集进行加权处理,以此来有效减少匹配点对的数量;其次,在重心距离特征的基础上,增加了一个角度特征量来排除错误点对,并完成初始配准;最后,使用特征改进的迭代最近点(ICP)算法进行精确配准。实验结果表明,该方法初始配准结果良好,二次配准效果更加准确,达到了多视角点云的配准要求。

关 键 词:点云  初始配准  精确配准  邻域特征  迭代最近点算法  
收稿时间:2011-09-23
修稿时间:2011-10-10

Application of neighborhood feature in point cloud registration
HE Yong-xing , OU Xin-liang , KUANG Xiao-lan. Application of neighborhood feature in point cloud registration[J]. Journal of Computer Applications, 2012, 32(3): 762-765. DOI: 10.3724/SP.J.1087.2012.00762
Authors:HE Yong-xing    OU Xin-liang    KUANG Xiao-lan
Affiliation:1.College of Computer and Communication, Hunan University of Technology, Zhuzhou Hunan 412008, China;
2.Department of Computer Science and Technology, Changsha University, Changsha Hunan 410003, China;
3.Department of Computer Science and Technology, Changsha Commerce and Tourism College, Changsha Hunan 410003, China
Abstract:A new registration method of large-scale scattered point clouds based on invariant features of neighborhood was proposed,which consisted of preliminary registration and exact registration.Firstly,the target point set was weighted to reduce the amount of corresponding point-pairs efficiently.Secondly,on the basis of distance features between points and their neighborhood centroids,this paper added an additional geometric feature vector of included angle to eliminate bad point-pairs,and then the preliminary registration was completed.Finally,the Iterative Closest Point(ICP) algorithm with improved invariant feature was used to register accurately.The experimental results indicate the good results of the preliminary registration and the better results of the exact registration,which have met the requirement of registering point clouds from different viewpoints.
Keywords:point cloud  preliminary registration  exact registration  neighborhood feature  Iterative Closest Point(ICP) algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号