首页 | 本学科首页   官方微博 | 高级检索  
     


Bed structure and its impact on liquid distribution in a trickle bed reactor
Authors:Akarsha Srivastava  Krishna D. P. Nigam  Shantanu Roy
Affiliation:1. Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India

Contribution: Data curation (equal), Formal analysis (equal), ​Investigation (equal), Writing - original draft (equal);2. Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India

Contribution: Conceptualization (equal), Resources (equal), Supervision (equal), Writing - review & editing (equal);3. Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India

Abstract:Trickle bed reactors, which has been a workhorse for the process and refining industry for many decades, are progressively being challenged to provide solutions to deep processing of feedstocks. It is known that the structure of the packed bed which is formed with a certain arrangement of catalyst particles in the three-dimensional space within the reactor modulates in an unknown fashion the flow of fluids in the trickle bed, and in turn affects the conversion and selectivity in the trickle bed. Under deep processing conditions, the impact of the bed structure in modulating the overall reactor performance in a trickle bed is not as yet established. The question begets three sequential studies: estimating and quantifying the bed structure, measuring the liquid distribution, and estimating transport parameters (that are dependent on the bed structure and liquid distribution) so that the overall performance metrics as a reactor may be quantified. This contribution relates to the second of these questions, the first being already addressed to some extent by our earlier work. The current investigation aims at quantifying the effect of structure of the packed bed on hydrodynamics of the reactor. The impact of various packing techniques is discussed along with the development of correlations for two-phase pressure drop and dynamic liquid holdup. Liquid distribution is studied in depth for various operating parameters such as gas and liquid superficial velocities and column aspect ratio for uniform and non-uniform packing methods. The packing devices consist of various inserts attached to a hopper which can generate packing structures having void fraction in the range of 37.2%–46.4%. The maldistribution factor and flow maps for various aspect ratio of column suggest that maldistribution rises along with the increased channeling effect along the height of the column. Uniformly packed bed were measurably less prone to maldistribution along the length than the non-uniformly packed beds.
Keywords:catalyst loading  dynamic liquid holdup  liquid maldistribution  packing structure  trickle beds  two-phase pressure drop
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号