首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor
Affiliation:CAS Key Laboratory of Geospace Environment, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract:The fusion performance and particle confinement of an international thermonuclear experimental reactor(ITER)-like fusion device have been modeled by numerically solving the energy transport equation and the particle transport equation. The effect of fuelling depth has been investigated. The plasma is primarily heated by the fusion produced alpha particles and the loss process of particles and energy in the scrape-off layer has been taken into account. To study the effect of fuelling depth on fusion performance, the ITERH-98P(y,2) scaling law has been used to evaluate the transport coefficients. It is shown that the particle confinement and fusion performance are significantly dependent on the fuelling depth. Deviation of 10% of the minor radius on fuelling depth can make the particle confinement change by ~ 61% and the fusion performance change by ~ 108%. The enhancement of fusion performance is due to the better particle confinement induced by deeper particle fuelling.
Keywords:particle fuelling  particle confinement  ITER
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《等离子体科学和技术》浏览原始摘要信息
点击此处可从《等离子体科学和技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号