首页 | 本学科首页   官方微博 | 高级检索  
     


Statistical analysis for strength and spatial distribution of reinforcement in SiC particulate reinforced aluminum alloy composites fabricated by die-casting
Authors:T W Lee  C H Lee
Affiliation:(1) School of Materials Science and Engineering, Inha University, 253 Yonghyun-Dong, Nam-Gu, Inchon, 402-751, South Korea
Abstract:Statistical analysis for strength and spatial distribution of reinforcement in die-cast SiCp/Al alloy composites was performed in order to predict the reliability of composites. Microstructural analysis was also done to determine the critical features of the composites. Die-casting was carried out using the preheated die at the casting temperature range of 620–750°C. It was found that the SiC pacticulates were homogeneously dispersed in die-cast Al matrix alloy, resulting from the refinement of dendritic cell size due to rapid cooling rate. The tensile strength of die-cast SiCp/Al alloy composites was higher than that of die-cast Al matrix alloy. Also, the tensile strength was slightly increased with increasing SiC particulate volume fraction at the casting temperature range of 650–700°C. It was concluded that the die-cast temperatures of 750 and 700°C are optimum condition for the distribution of SiC particulates in consequence of good fluidity of melt for 10 and 20 vol.% SiCp/Al alloy composites, respectively. However, the strength scattering of composites was increased with increasing SiC particulate volume fraction. For the statistical evaluation of strength, the maximum Weibull modulus of die-cast SiCp/Al alloy composites, which was obtained at the cast temperature of 700°C, was 29.6 in Al matrix alloy, 22.2 in 10 vol.% SiCp and 14.2 in 20 vol.% SiCp, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号