首页 | 本学科首页   官方微博 | 高级检索  
     


The Frictional Response of VC(100) Surfaces: Influence of 1-Octanol and 2,2,2-Trifluoroethanol Adsorption
Authors:Luis C. Fernández-Torres  Byung-Il Kim  Scott S. Perry
Affiliation:(1) Department of Chemistry, University of Houston, Houston, Texas, 77204-5003;(2) Present address: Sandia National Laboratory, Albuquerque, New Mexico
Abstract:In this report, we present ultrahigh vacuum (UHV) atomic-scale measurements of the frictional response of the VC(100) surface and the influence on friction through the adsorption of 1-octanol (CH3(CH2)7OH) and 2,2,2-trifluoroethanol (CF3CH2OH). Atomic force microscopy (AFM) has been used to determine the changes in interfacial friction and adhesion, while scanning tunneling microscopy (STM) has revealed changes in surface morphology upon adsorption. X-ray photoelectron spectroscopy (XPS) has been utilized to determine the composition of the surface formed through the reaction of these adsorbates with VC. Adsorption of 1-octanol on the VC(100) surface at room temperature causes a 15% reduction in the friction measured between a clean VC surface and a silicon nitride AFM tip. STM images, combined with XPS results, reveal that 1-octanol does not completely cover the surface and that saturation occurs approximately at a 500L exposure. Adsorption of 2,2,2-trifluoroethanol on the VC(100) surface at room temperature produces a significant increase in friction while at the same time producing a decrease in adhesion. These contrasting results are interpreted in terms of differences in interfacial shear strength, chemical composition, and the molecular details of the adsorbed layer.
Keywords:atomic force microscopy  friction  tribology  lubrication  carbides  alcohols  surface chemical reaction
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号