首页 | 本学科首页   官方微博 | 高级检索  
     


A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO2 catalysts
Authors:Mark A Bollinger  M Albert Vannice
Affiliation:Department of Chemical Engineering, Penn. State University, University Park, PA 16802, USA
Abstract:Titania-supported gold catalysts are extremely active for room temperature CO oxidation; however, deactivation is observed over long periods of time under our reaction conditions Impregnated AuTiO2 is most active after a sequential pretreatment consisting of high temperature reduction at 773 K, calcination at 673 K and low temperature reduction at 473 K (HTR/C/LTR); the activity after either only low temperature reduction or calcination is much lower. A catalyst prepared by coprecipitation had much smaller Au particles than impregnated AuTiO2 and was active at 273 K after either an HTR/C/LTR or a calcination pretreatment. Deposition of TiOx overlayers onto an inactive Au powder produced high activity; this argues against an electronic effect in small Au particles as the major factor contributing to the activity of AuTiO2 catalysts and argues for the formation of active sites at the AuTiOx interface produced by the mobility of TiOx species. DRIFTS (diffuse reflectance FTIR) spectra of impregnated AuTiO2 reveal the presence of weak reversible CO adsorption on the Au surface but not on the TiO2; however, a band for adsorbed CO is observed on the pure TiO2. Kinetic studies with a 1.0 wt.-% impregnated AuTiO2 sample showed a near half-order rate dependence on CO and a near zero-order rate dependence on O2 between 273 and 313 K with an activation energy near 7 kcal/mol. A two-site model, with CO adsorbing on Au and O2 adsorbing on TiO2, is consistent with Langmuir-Hinselwood kinetics for noncompetitive adsorption, fits partial pressure data well and shows consistent enthalpies and entropies of adsorption. The formation of carbonate and car☐ylate species on the titania surface was detected but it appears that these are spectator species. DRIFTS experiments under reaction conditions also show the presence of weak, reversible adsorption of CO2 (near 2340 cm−1) which may be competing with CO for adsorption sites.
Keywords:Carbon monoxide oxidation  Kinetics of CO oxidation  Gold-titania  DRIFTS of CO on AuTiO2
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号