首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于项集优化重组的频繁项集发现算法
作者姓名:
王明
宋顺林
作者单位:
1. 江苏大学2. 江苏大学计算机学院
基金项目:
江苏省产业信息化重点基金资助项目
摘 要:
发现频繁项集是关联规则挖掘的主要途径,也是关联规则挖掘算法研究的重点。关联规则挖掘的经典Apriori算法及其改进算法大致可以归为基于SQL和基于内存两类。为了提高挖掘效率,在仔细分析了基于内存算法存在效率瓶颈的基础上,提出了一种发现频繁项集的改进算法。该算法使用了一种快速产生和验证候选项集的方法,提高了生成项目集的速度。实验结果显示该算法能有效提高挖掘效率。
关 键 词:
数据挖掘
频繁项集
项集数组
逻辑运算
关联规则
收稿时间:
2010-03-12
修稿时间:
2010-05-10
本文献已被
万方数据
等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号