首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and characterization of carbon nanotubes supported platinum nanocatalyst for proton exchange membrane fuel cells
Authors:JF Lin  AM Kannan
Affiliation:a Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212, USA
b Oceanit Laboratories, 828 Fort Street Mall, Suite 600, Honolulu, HI 96813, USA
Abstract:Multi-walled carbon nanotubes (MWCNTs) were used as catalyst support for depositing platinum nanoparticles by a wet chemistry route. MWCNTs were initially surface modified by citric acid to introduce functional groups which act as anchors for metallic clusters. A two-phase (water-toluene) method was used to transfer PtCl62− from aqueous to organic phase and the subsequent sodium formate solution reduction step yielded Pt nanoparticles on MWCNTs. High-resolution TEM images showed that the platinum particles in the size range of 1-3 nm are homogeneously distributed on the surface of MWCNTs. The Pt/MWCNTs nanocatalyst was evaluated in the proton exchange membrane (PEM) single cell using H2/O2 at 80 °C with Nafion-212 electrolyte. The single PEM fuel cell exhibited a peak power density of about 1100 mW cm−2 with a total catalyst loading of 0.6 mg Pt cm−2 (anode: 0.2 mg Pt cm−2 and cathode: 0.4 mg Pt cm−2). The durability of Pt/MWCNTs nanocatalyst was evaluated for 100 h at 80 °C at ambient pressure and the performance (current density at 0.4 V) remained stable throughout. The electrochemically active surface area (64 m2 g−1) as estimated by cyclic voltammetry (CV) was also similar before and after the durability test.
Keywords:Carbon nanotubes  Platinum nanoparticles  Membrane/electrode assemblies  PEM fuel cells
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号