首页 | 本学科首页   官方微博 | 高级检索  
     

一步碾磨法快速制备红磷嵌入的氮磷共掺杂分级多孔碳复合材料及其储锂性能研究(英文)
作者姓名:杜祝祝  艾伟  俞晨阳  龚玉娇  陈如意  孙庚志  黄维
作者单位:Key Laboratory of Flexible Electronics&Institute of Advanced Materials;Institute of Flexible Electronics;Key Laboratory for Organic Electronics&Information Displays
基金项目:supported by the National Key Basic Research Program of China (2015CB932200);the National Natural Science Foundation of China (61704076);the Natural Science Foundation of Jiangsu Province (BK20171018);Jiangsu Specially-Appointed Professor Program (54935012);the support from the Fundamental Research Funds for the Central Universities (31020180QD094)
摘    要:红磷因具有高理论储锂容量而成为新一代锂离子电池的重要候选材料,然而其实际应用却受到导电性差以及充放电过程中体积变化大的限制.针对以上问题,本文利用一步碾磨法制备了亚微米/纳米尺度红磷颗粒嵌入的氮、磷原子共掺杂分级多孔碳复合材料(P@NPHPC). NPHPC三维交联的分级多孔结构为红磷负载提供了充足的空间,促进了稳定磷/碳界面的形成,从而有效解决了红磷作为电极材料的不足.基于此, P@NPHPC负极表现出良好的循环稳定性(100 mA g^-1电流密度下, 100次循环后比容量为1120 mA h g^-1)和优越的倍率性能(6400 mA g^-1电流密度下比容量为248 mA h g^-1).本工作对高性能磷/碳复合材料的批量制备及实际应用具有指导意义.

关 键 词:电流密度  红磷  碾磨  磷原子  快速制备  复合材料  锂离子电池  充放电过程

A facile grinding approach to embed red phosphorus in N,P-codoped hierarchical porous carbon for superior lithium storage
Authors:Zhuzhu Du  Wei Ai  Chenyang Yu  Yujiao Gong  Ruyi Chen  Gengzhi Sun  Wei Huang
Affiliation:(Key Laboratory of Flexible Electronics&Institute of Advanced Materials,Nanjing Tech University,Nanjing 211816,China;Institute of Flexible Electronics,Northwestern Polytechnical University,Xi’an 710072,China;Key Laboratory for Organic Electronics&Information Displays,Institute of Advanced Materials,Nanjing University of Posts&Telecommunications,Nanjing 210023,China)
Abstract:Despite red phosphorous(P)-based anodes hold great promise for advanced lithium-ion batteries due to their high theoretical capacity, their practical application is hindered by poor electronic conductivity and drastic volume changes during charge-discharge processes. In order to tackle these issues, herein, a facile grinding method was developed to embed sub-micro-and nano-sized red P particles in N,P-codoped hierarchical porous carbon(NPHPC). Such a unique structure enables P@NPHPC long-cyclic stability(1120 mAh g^-1 after 100 cycles at 100 mA g^-1) and superior rate performance(248 mA h g^-1 at 6400 mA g^-1). It is believed that our method holds great potential in scalable synthesis of P@carbon composites for future practical applications.
Keywords:red P  hierarchical porous carbon  grinding  composites  lithium-ion batteries
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号